Sympathetic Vibratory Physics - It's a Musical Universe!
 
 SVP Notes
 
  SVP Notes Index

NEW PHYSICS FOR A NEW SOURCE part 4

Text: Rotating-Magnet Energy Innovators "I think it is possible to utilize magnetism as an energy-source. But we science idiots cannot do that; this has to come from the outside." -Werner Heisenberg, Nobel laureate "The magnet is a window to the free space energy of the Universe." -Bruce DePalma, Inventor As we saw in Chapter 6, magnets can be used to capture space energy and put it to work. Magnetic fields can be tinkered with so that they serve as gates, guiding space energy into electric devices in the same way that a sluice in a river guides water into a waterwheel. This opens a whole new world of energy possibilities. This chapter introduces us to two inventors who have shown that it is possible to use magnetism as a power source. Unlike Floyd Sweet and his stationary-magnet device, these men use rotating magnets to convert space energy into electricity. One began his career as a physics teacher at the Massachusetts Institute of Technology (WI ) and is now self-exiled in New Zealand, while the other is an aviation safety consultant who recently gave a lecture to a group of physicists at MIT. We will also see how space energy is being pursued in Asia, even as it is being ignored in North America. BRUCE DEPALMA AND THE N-MACHINE While his brother Brian has spun a Hollywood career directing films such as Carrie, Scarface, and The Untouchables, it looked like Bruce DePalma would live a secure life in academia, wrapped in the respect accorded an MIT faculty member. After receiving an electrical engineering degree from MIT in 1958, he worked in both government and industry before going to Harvard in 1961 for graduate work in applied physics. He became an MIT lecturer in the late 1960s. During that turbulent time, DePalma's life underwent a change, a period of soul-searching that was spurred by both the student movement and by his sense that society was disintegrating. As a result, he dropped out of academia and headed west to Mendocino, California, where he took up meditation. One afternoon, his thoughts turned to something he had played with as a kid and never understood‹why does a gyroscope behave as it does? A thought came out of the blue‹maybe the rotation of the gyro wheel somehow lo cked onto the space around a spinning body such as the earth. Experiments With Rotation and Energy Sometimes the simplest of experiments leads to new understanding. In the sixteenth century, Galileo's first breakthrough came from dropping a big rock and a small rock from the Leaning Tower in Pisa and finding, contrary to accepted belief at the time, that they both fell at the same rate. DePalma's breakthough also came from a simple experiment. He rotated ball bearings‹steel balls like those found in pinball machines‹at a high rate of speed, and launched them into the air while carefully taking multiple time-lapse photographs. He discovered to his surprise that they rose farther and fell faster than ball bearings that were not spinning when launched. He thought this indicated that the spinning bearings were interacting with a new kind of energy‹what we now call space energy. DePalma was even more intrigued when he launched pairs of ball bearings, one spinning to the left and the other spinning to the right. He found that each bearing rose and fell at a different rate, indicating that each might be interacting with this different source of energy in a different way. DePalma felt his findings were important, and took them to a prestigious mentor of his, a Princeton physicist. But he failed to raise the man's interest. So DePalma retreated with some friends to a farm in Pennsylvania for more research with rotating objects. Starting with what was at hand, he put the pendulum from a grandfather clock into a vacuum‹to rule out any air-pressure effects‹and found that spinning the bob did in fact make a difference in the length of the pendulum's swing. He then did an experiment which showed that if you collide a rotating object into something else, it rebounds further than if it had not been rotating. As with the ball-bearing experiments, these results indicated that an object might pick up space energy while spinning. (See "Spirals of Energy" on page 13.) As a result of his experiments‹and of the experiments of others -DePalma now imagines that space energy flows through a metal conductor and gives it different properties, just as fluid flowing into a dry sponge gives weight to the sponge. (See Chapter 4 for a more complete discussion of the theory behind space energy.) DePalma continued his gravity and inertia research when he moved to a home in the foothills of Santa Barbara, California. His living room was full of unusual sights, such as a circle of grass growing above a spinning stereo turntable and weights hanging from ceiling hooks for pendulum experiments. DePalma Develops the N-Machine DePalma decided to take the results of his newfound knowledge from the realm of swinging objects into the realm of electric meters, where accurate measuring instruments are available to everyone. His intuition led him, step by step, to learning about the properties of rotating magnets, and to an energy discovery that further changed his life. DePalma turned to the writings of the famous British pioneer of electricity and magnetism, Michael Faraday (1791-1867). Faraday is well known for inventing the two-piece induction generator, a piece of equipment that, in its basic principles, is still used to generate electricity today. But Faraday also invented what he called a homopolar generator in 1831. He found that electric current can be taken from a spinning copper disk when the disk is rotated along with the magnets, instead of past the magnets, as in the induction generator. This unique setup may have allowed Faraday to tap into a different source of energy‹space energy. However, Faraday never fully developed the homopolar generator into a fully functional piece of practical equipment. DePalma studied this generator with intense interest, convinced he had found something of tremendous value Nearly 150 years later, DePalma repeated Faraday's experiment except that DePalma used modern materials, such as super-powerful magnets, to extract the electricity. DePalma has named his device the N-machine, "meaning to the nth degree," because he sees the N-machine's potential as being almost unlimited. The name also refers to his speculation that a magnet taps energy from another dimension. He believes the magnets cause a distortion of the aether, a concept we discussed in Chapter 4, allowing space energy to flow into the machine. From 1978 through 1979, Bruce DePalma and his assistants used the workshop of a California commune the Sunburst spiritual and agricultural community near Santa Barbara‹to build a prototype generator called the Sunburst homopolar generator. After a year of refinements, they began serious testing in 1980. Sunburst test results indicated that output power was more than the input power, and that the N-machine was much more efficient than a standard generator. Then a professor of electrical engineering from Stanford University tested it. Robert Kincheloe did a series of tests on a machine designed by DePalma and built by Charya Bernard of the Sunburst Community from 1985 through 1986. Kincheloe also got more output power than input power. He reported: "DePalma may have been right, in that there is indeed a situation here whereby energy is being obtained from a previously unknown and unexplained source. This is a conclusion that most scientists and engineers would reject out of hand as being a violation of the accepted laws of physics, and if true has incredible implications." DePalma Runs Into Trouble "I thought everybody would beat a path to my door after I did these experiments, but I ran into a stone wall," says DePalma.. "It's as if science were in its old age and it's gotten a long way from the laboratory." He adds that it is as if the science establishment took the experiments that were done in the nineteenth and early twentieth centuries, reduced them all to mathematical equations, and made them into a gospel. "If you go to Washington, D.C. to the Department of Energy with a new way of liberating energy, they will bring out all these old relationships and say, 'It isn't in accord with the [law of] Conservation of Energy' or 'It violates Einstein's Theory of Relativity."' DePalma himself had fully believed in the law of energy conservation, which says that you can't get more energy out of a system than you put into it. But what about the results of his experiments? Like most other energy researchers we have met so far, it dawned on him that the excess energy was coming right out of space itself. Therefore, the law of conservation wasn't really being broken. A skeptical science establishment has not been DePalma's only source of trouble. In 1990, he wrote: "Three or four commercial groups have approached me to supply money for the commercial manufacture of N-machines. Many promises have been made, but no funds yet. What generally gums things up is the greed of the money people, not the ability of my machine to perform.... What is needed now is a movement to develop the N-machine source of electrical power as a national priority." At that time, I asked DePalma why he didn't close the loop‹feed part of the power output back into the machine to produce continuous motion. Powering a house or a set of appliances with such a setup would be the demonstration that would convince skeptics. He replied that one reason he hadn't developed the prototype further in the United States was "because I would get my head blown off." He added that a threat was passed on to him through a messenger with highly placed connections to the United States government. In 1992, he perceived that space energy was wanted elsewhere, but not in the United States. Therefore, he expatriated himself, first to Australia and then to New Zealand, where he continues to work on his invention. BERTIL WERJEFELT AND THE MAGNETIC BATTERY-GENERATOR Bertil Werjefelt sports a Hawaiian suntan because the islands are his adopted home, but he has little time for the beach. Consulting on aviation safety, overseeing a small corporation, and writing technical papers make up only part of his life. Werjefelt has also been working on a magnet-energy device for several decades. A representative of the Sumitomo Corporation who visited Werjefelt's manufacturing facility said that the invention could be "the most important discovery this century." Werjefelt was educated in his native Sweden and then came to the United States in the early 1960s. He furthered his education in mechanical engineering at both the University of Utah and the University of Hawaii. He now heads a research and development group, Poly Tech USA, that devises safety equipment for airplanes' such as a system that allows pilots to see the flight path and vital instruments regardless of how much smoke is in the cockpit. A New Device From Old Concepts In the 1970s, Werjefelt was one of many people who became concerned about the problem of fossil-fuel pollution. So he used his engineering background to create an energy invention - a generator powered by energy extracted from magnetic fields. Standard generators, which use magnets, are subject to a problem known as magnetic drag. Drag is a residual magnetism that slows the spinning of the rotor, the part that either moves the magnets past an electric coil or the coil past the magnets, depending on the generators design. Werjefelt improved the standard generator; he added a special spinning system that cancels magnetic drag by counteracting it with the force fields of additional magnets. The result is a generator that puts out more power with the same input. That raises a question: Where does the excess energy come from? "I don't know," Werjefelt says. "It could be [space] energy, or something we don't even know about." Werjefelt's experimental models have not yet evolved into the remanufacturing stage they have only produced more power output than input for several minutes at a time. But results are impressive enough to keep him going. For example, at one point his generator has shown 160 watts input and 450 watts output, or almost triple the power. He believes his crew has solved some of the most troublesome technical problems and that magnetically powered electric generators could be available for everyday use within a few years. Some onlookers in the new-energy field are as impressed with the scientific paperwork Werjefelt has done as they are with his experimental models. After he came up with the design, Werjefelt realized that he would need to explain the results in order to get a patent. He would also need to convince a skeptical scientific community. So Werjefelt dug into the physics literature and found evidence to support his claim. He used this evidence in a 1995 lecture at MIT to argue that standard science's teachings on magnetism have been incomplete from the beginning, and that as a result, the scientific community declared early on that it was impossible to use magnetism as an energy source. The other fundamental forces in nature‹ nuclear physics and gravitation‹have been harnessed in the forms of nuclear power plants and hydroelectric dams, but science has been blind to the possibility of using magnetism as a source of power. In general, though, Werjefelt refuses to become caught up in what he calls "paralysis by analysis." He is more interested in proving that his device works. "Look at it as a quantum leap in the energy field,'' he says, "like the leap from slide rulers to handheld electric calculators." Corporate Interest From Japan In 1990, Werjefelt sent a notice to large corporations such as General Electric and Westinghouse in the United States, Siemens in Europe, and Hitachi and Sumitomo in Japan about his discovery Most of the replies were, "It is not possible." Others thanked him and said, "Call us when the patent is issued." It turned out that the Japanese were very interested in magnets and energy. In October 1993, Japanese television aired a program, The Dream Energy, in which Japanese scientist Terohiko Kawai discussed a device similar to Werjefelt's. Well-funded Japanese research teams have engineered this discovery into reliable units for existing motors. Werjefelt spent two days with an official from Sumitomo and learned that the Japanese motors are running for hours, days, weeks. Japanese industrialists are switching over to the new units, which will use about half as much fossil fuel as existing motors. For example, the television program showed a refrigerator, a vacuum cleaner, and other common appliances with such motors. Werjefelt, on the other hand, is more interested in producing electricity. He estimates that if power plants are built using his Magnetic Battery-Generator instead of conventional equipment, they could put out fifteen to eighteen times as much electricity. GOVERNMENT BACKING FOR INVENTORS ELSEWHERE As we have seen in Bertil Werjefelt's saga, American corporations are generally staying aloof from new-energy developments, while other countries' governments underwrite corporate research in this field. For example, two countries are working on devices similar to Bruce DePalma's N-machine. Japan Becomes Involved In Japan, a soft-spoken scientist is getting government help on his variation of the N-machine. Shiuji Inomata, Ph.D., worked at the electrotechnical laboratory of the Ministry of International Trade and Industry (MITI) in Ibaraki, Japan. Inomata's version of the N-machine‹named the JPI, after a private research institute‹produced a small amount of excess power as a first prototype. Now retired, Inomata continues to work on the JPI, and is interested in seeing others continue his research. "Politicians and industry are increasingly becoming aware of the new energy breakthrough.² he says. This could give Japan a considerable lead in the race to produce N-machine technology. For further discussion on why new energy fascinates the Japanese, see page 101. India Also Pursues Space Energy Japan is not the only Asian country that is actively pursuing space energy. In India, a government-employed nuclear scientist is also working on a type of N-machince with his employer's blessing. Paramahamsa Tewari, Ph.D., is a senior engineer with the Department of Atomic Energy's Nuclear Power Corporation (NPC). His version of the N-machine is called the Space Power Generator (SPG). Among the Westerners who have encouraged Tewari over the years is Bruce DePalma. Tewari says, "But for DePalma, I wouldn't have been able to tie up my theory. He was working on ular ideas and kept sending his results to me." Tewari is project director of the NPC's Kaiga Project in the state of Karnataka. Although his spare time for refining the SPG is limited, Tewari is enthusiastic about it. The NPC's managing director, S. L. Kati, says, "Tewari's prototype SPG can be considered a major breakthrough." It is unusual for a government to encourage one of its nuclear physicists to explore space energy. But Tewari has gotten special treatment from his government. For example, instead of travelling on a private passport to a new-energy symposium in the United States several years ago, Tewari's passport had been cleared by the Indian government, which smoothed his way through airports. In building SPG prototypes, he uses the services of electricians and mechanics, as well as a workshop, at the nuclear plant where he works. Tewari is pleased with how things are going at his day job‹ the project is moving forward. Thus, he feels well justified in putting a "do not disturb" sign on his door twice a week to work on the SPG for a couple of hours. Why has Tewari found such cordiality from an agency that provides megaproject power? He says, "They feel that if something meaningful comes out of (the Space Power Generator), the world may benefit." He adds: "I am heading the whole electrical department of a nuclear project.... I do my job great, and there is mutual respect. People didn't [get] in my way. I also very bluntly threw away any Opposition. I just said, "Look. I don't care about you. I earn my living as a government officer, yes. But I have my research to do and you can't stop me."

See Also:

Source:

Top of Page | Master Index | Home | What's New | FAQ | Catalog