Sympathetic Vibratory Physics - It's a Musical Universe!
 
 SVP Notes
 
  SVP Notes Index

DIAMAGNETIC MATERIALS

Text: Diamagnetic and paramagnetic materials Imagine a hydrogen atom in which a nucleus with a single stationary and positively charged proton is orbited by a negatively charged electron. Can we view that electron in orbit as a sort of current loop? The answer is yes, and you might then think that hydrogen would have a strong magnetic moment. In fact ordinary hydrogen gas is only very weakly magnetic. Recall that each hydrogen atom is not isolated but is bonded to one other to form a molecule, giving the formula H2 - because that has a lower chemical energy (for H by a whopping 218 kJ mol-1) than two isolated atoms. It is not a coincidence that in these molecules the angular momentum of one electron is opposite in direction to that of its neighbour, leaving the molecule as a whole with little by way of magnetic moment. This behaviour is typical of many substances which are then said to lack a permanent magnetic moment. When a molecule is subjected to a magnetic field those electrons in orbit planes at a right angle to the field will change their momentum (very slightly). This is predicted by Faraday's Law which tells us that as the field is increased there will be a an induced E-field which the electrons (being charged particles) will experience as a force. This means that the individual magnetic moments no longer cancel completely and the molecule then acquires an induced magnetic moment. This behaviour, whereby the induced moment is opposite to the applied field, is present in all materials and is called diamagnetism. Hydrogen, ammonia, bismuth, copper and other diamagnetic substances, are repelled by a nearby magnet (although the effect is extremely feeble). Think of it as a manifestation of Lenz's law. Diamagnetic materials are those whose atoms have only paired electrons. In other molecules, however, such as oxygen, where there are unpaired electrons, the cancellation of magnetic moments belonging to the electrons is incomplete. An O2 molecule has a net or permanent magnetic moment even in the absence of an externally applied field. If an external magnetic field is applied then the electron orbits are still altered in the same manner as the diamagnets but the permanent moment is usually a more powerful influence. The 'poles' of the molecule tend to line up parallel with the field and reinforce it. Such molecules, with permanent magnetic moments are called paramagnetic. Although paramagnetic substances like oxygen, tin, aluminium and copper sulphate are attracted to a magnet the effect is almost as feeble as diamagnetism. The reason is that the permanent moments are continually knocked out of alignment with the field by thermal vibration, at room temperatures anyway (liquid oxygen at -183 °C can be pulled about by a strong magnet). Particular materials where the magnetic moment of each atom can be made to favour one direction are said to be magnetizable. The extent to which this happens is called the magnetization. Fig. MPA b) above is the magnetization curve for diamagnetic materials. In diamagnetic substances the flux grows slightly more slowly with the field than it does in a vacuum. The decrease in gradient is greatly exaggerated in the figure - in practice the drop is usually less than one part in 6,000. Fig. MPA c) is the curve for paramagnetic materials. Flux growth in this case is again linear (at moderate values of H) but slightly faster than in a vacuum. Again, the increase for most substances is very slight. Although neither diamagnetic nor paramagnetic materials are technologically important (geophysical surveying is one exception), they are much studied by physicists, and the terminology of magnetics is enriched thereby.

See Also:

Source:

Top of Page | Master Index | Home | What's New | FAQ | Catalog