AFFINTY, ELECTRICAL, HELMHOLTZ part 1 of 9
Text: THE MODERN DEVELOPMENT OF FARADAY'S CONCEPTION OF ELECTRICITY [1881] Hermann von Helmholtz The Faraday Lecture, delivered before the Fellows of the Chemical Society in London on April 5, 1881 As I have the honor of speaking to you in memory of the great man who, from the very place where I stand, has so often revealed to his admiring auditors the most unexpected secrets of nature, I hope at the outset to gain your assent if I limit my exposition to that side of his activity which I know the best from my own experiences and studies: I mean the theory of electricity. The majority, indeed, of Faraday's own researches were connected directly or indirectly with questions regarding the nature of electricity, and his most important and most renowned discoveries lay in this field. The facts which he discovered are universally known. Every physicist at present is acquainted with the rotation of the plane of polarization of light by magnetism, with dielectric tension and diamagnetism, and with the measurement of the intensity of galvanic currents by the voltameter, while induced currents act on the telephone, are applied to paralyzed muscles, and nourish the electric light. Nevertheless, the fundamental conceptions by which Faraday was led to these much admired discoveries have not received an equal amount of consideration. They were very divergent from the trodden path of scientific theory and appeared rather startling to his contemporaries. His principal aim was to express in his new conceptions only facts, with the least possible use of hypothetical substances and forces. This was really an advance in general scientific method, destined to purify science from the last remnants of metaphysics. Faraday was not the first and not the only man who has worked in this direction, but perhaps nobody else at his time did it so radically. But every reform of fundamental and leading principles introduces new kinds of abstract notions, the sense of which the reader does not catch in the first instance. Under such circumstances it is often less difficult for a man of original thought to discover new truth than to discover why other people do not understand and do not follow him. This difficulty must increase in Faraday's case because he had not gone through the same common course of scientific education as the majority of his readers. Now that the mathematical interpretations of Faraday's conceptions regarding the nature of electric and magnetic forces has been given by Clerk Maxwell, we see how great a degree of exactness and precision was really hidden behind the words which to Faraday's contemporaries appeared either vague or obscure; and it is in the highest degree astonishing to see what a large number of general theorems, the methodical deduction of which requires the highest powers of mathematical analysis, he found by a kind of intuition, with the security of instinct, without the help of a single mathematical formula. I have no intention of blaming his contemporaries, for I confess that many times I have myself sat hopelessly looking upon some paragraph of Faraday's descriptions of lines of force, or of the galvanic current being an axis of power, and so on. A single remarkable discovery may, of course, be the result of a happy accident and may not indicate the possession of any special gift on the part of the discoverer; but it is against all rules of probability that the train of thought which has led to such a series of surprising and unexpected discoveries as were those of Faraday should be without a firm, although perhaps hidden, foundation of truth. We must also in his case acquiesce in the fact that the greatest benefactors of mankind usually do not obtain a full reward during their lifetime and that new ideas need the more time for gaining general assent, the more really original they are and the more power they have to change the broad path of human knowledge. Faraday's electrical researches, although embracing a great number of apparently minute and disconnected questions, all of which he has treated with the same careful attention and conscientiousness, really always aim at the two fundamental problems of natural philosophy -- the one, more regarding the nature of the forces termed physical, or of forces working at a distance; the other, in the same way, regarding chemical forces, or those which act from molecule to molecule, and the relation between these and the first. I shall give you only a short exposition on the degree of development which has been reached in the present state of science with regard to the first of these problems. The discussion of this question among scientific men is not yet finished, although, I think, it approaches its end. It is entangled with many geometric and mechanical difficulties. How these are to be solved, and what are the arguments pro and contra, I cannot undertake to explain in a short public lecture with any hope of gaining your scientific conviction. I can therefore give only a short statement of this side of the question, representing my own opinions; but I must not conceal the fact that several men of great scientific merit, principally among my own countrymen, do not yet agree with me.
See Also:
Source: