LITTLE KNOWN FACTS ABOUT POLIOMYELITIS VACCINATIONS
Nexus Magazine Aug-Sept 2009 Vol 16, No.5
PART 1
Pro-vaccinators claim eradication success with vaccines against two diseases: smallpox and poliomyelitis. The problem is that both these claims are not true, but many people believe them. In this article, I deal with outbreaks of paralytic poliomyelitis straight after mass vaccination programs in both developed and developing countries, as published in orthodox medical journals.
When the first, injectable, Salk polio vaccine was tested on some 1.8 million children in the USA in 1954-55, cases of paralysis in the vaccinated and some of their contacts started occurring within days (Francis et al, 1955; Peterson et al., 1955). It became known as the Cutter Incident. Cutter Laboratories was accused of distributing vaccines which contained live polioviruses. Even though paralysis also occurred after injections of other polio vaccines produced by different manufacturers, Cutter Laboratories became the scapegoat and was asked to withdraw all batches of its vaccines.
The disasters with the injectable polio vaccines causing paralysis seem to have been one of the main motivations behind developing an oral poliovirus vaccine (OPV), which was believed to simulate the natural infection. The reality proved such expectations wrong.
Henderson et al. (1964) wrote that since 1961, when oral poliomyelitis vaccines were first made available for general use in the USA, scattered cases of paralytic disease have occurred in association with these vaccines. Many of these cases have been clinically indistinguishable from paralytic poliomyelitis. Epidemiologically, the pattern of their occurrence has raised the possibility that some cases may have been caused by the vaccines. In 1962, when the existence of this problem was first appreciated, the Surgeon General of the US Public Health Service convened a Special Advisory Committee which met on a number of occasions between August and December. The committee reviewed in detail the reported cases of paralytic disease occurring within a period of 30 days following ingestion of the oral polio vaccine. Of these, 11 followed "type III vaccine" and seven followed "type I vaccine". The committee concluded that "the maximum potential risk for types I and III vaccine is in the order of one per million or less overall; but higher for those over 30 years of age".
Now we know how the much-quoted rate of these vaccine-caused cases as "one per million or less overall" was born: it was created as a typical desktop statistic by a committee and not achieved by a proper statistical study. (A proverbial camel: a horse created by a committee. Sorry, camels; only joking!)
Importantly, poliovirus type III was the one most implicated. The committee also made this allegation: "The total number of such reports [meaning paralysis after the administration of OPV] received by the Public Health Service through June 1964, is 123. This number includes those cases reviewed by the Committee in 1962. Of this total, 36 cases occurred in epidemic areas where mass immunization programs were undertaken as emergency control measures. The remaining 87 cases were widely scattered and occurred in nonepidemic areas usually following community-wide oral poliomyelitis programs."
I find it hard to believe that, in a country with some 220 million people and 2.5 million live births per year, there would only be some 200 cases of paralysis. Even if it were true, then the number certainly would be more than the much-quoted "one case in a million".
Because of the continued incidence of vaccine-associated cases, a committee was again convened by the Surgeon General to re-assess the problem and to develop recommendations for the future use of oral poliomyelitis vaccines. The committee met on 17 and 18 July 1965. Its recommendations, as far as the diagnosis of poliomyelitis is concerned, were as follows:
"1. Onset of illness between four and 30 days
following feeding of the specific vaccine in question, with onset of paralysis
not sooner than six days after the feeding;
"2. Significant residual-lower-motor-neuron paralysis;
"3. Laboratory data not inconsistent with respect to multiplication of the
vaccine virus fed;
"4. No evidence of upper-motor-neuron disease, definite sensory loss or
progression or recurrence of paralytic illness one month or more after onset."
Of the 87 cases considered, 57 were judged "compatible" and 21 were excluded after careful consideration. In nine of the cases, the data were considered insufficient upon which to make a judgement. The "compatible" cases occurred largely among adults, 44 being 15 years of age or older and eight over 50 years of age. The onset of illness fell between four and 28 days, with the majority of cases occurring within eight to 21 days following vaccine administration. There was no apparent association of cases with specific lots of vaccine or vaccine produced by a particular manufacturer.
It is obvious to me that this committee's main motivation was to exclude as
many paralysis cases associated with vaccination as possible. There was no
concern for the affected recipients of the polio vaccines; they were discarded
and left to fend for themselves. A truly mediaeval, feudalistic and, to say the
least, unscientific attitude!
Under "Evaluation of the risk", the committee wrote that it "recognizes that it
is not possible to prove that any individual case was caused by the vaccine and
that no laboratory tests available can provide a definitive answer".
The committee went further and stated the following:
"1. The extent of the associated risk is sufficiently low relative to the risk of naturally occurring illness in children to warrant continuation and intensification of the poliomyelitis immunization program throughout the nation, although with some changes in emphasis;
"2. Primary emphasis should be given in all communities to the immunization of all infants during their first year of life. All communities which have not already organized continuing programs for the effective immunization of their infants and preschool children in all socioeconomic groups are urged to do so. (The success of such programs is requisite for attaining the goal of the elimination of paralytic poliomyelitis since it is primarily these younger children who serve to transmit the natural infection within the community.)
"3. Communities which have not yet embarked upon mass immunization programs are encouraged to do so during the coming fall and winter (1964-65). (Such programs will be of value only if they succeed in reaching unimmunized persons, particularly preschool children, in lower socioeconomic areas. Before embarking on mass programs, all communities should develop definite plans for continuing immunization programs to care for new susceptibles born into or moving into the community)."
The statements and conclusions in the above paragraphs are important in that they started the avalanche of denials of the causal link between the documented administration of the offending vaccines and the resultant symptoms (paralysis)—which, in my opinion, defies common sense. While it may be partially true that the contemporary methods in the 1960s may have been insufficient to prove the causal link, the obviously flawed methods and criteria for accepting causality developed soon afterwards. Moreover, the repetition in innumerable countries of documented outbreaks of polio within 30 days after vaccination drives is sufficient to see that polio vaccines of all kinds (OPV, IPV) do cause major outbreaks of paralytic poliomyelitis, following vaccination drives, in areas that have not had any polio cases for a number of years.
The most important development was the publication of Bradford Hill's 1965 paper, in which he defined nine points to be fulfilled for accepting causality. All documented outbreaks of polio after vaccination drives fulfill these nine points. Outbreaks of other infectious diseases in the vaccinated follow suit.
It is interesting that the pro-vaccinators frown upon those, including myself, who study relevant medical papers published before the 1990s, yet they try to write off such articles as automatically obsolete. As the above published information shows, they are very relevant to the present situation in vaccination. Pro-vaccinators themselves still act upon obsolete information such as outlined above (notwithstanding practising Jennerian vaccination) and keep denying that it is possible to prove causality and/or that serious vaccine reactions are in the order of one in a million. Surely, modern medicine's diagnostic methods have progressed since the 1960s—or haven't they? With modern statistical methods, it is possible to calculate the rates more precisely.
Similar "reasoning" applies to the pro-vaccinators' constant assertions that there are no known treatment methods to effectively manage , infectious diseases of childhood and therefore that's why we have to continue preventing them by vaccination. They totally overlook the vaccines' obvious and documented ineffectiveness in preventing any diseases, and the never-ending trail of disasters and very serious immune, autoimmune and degenerative diseases created in the process by modern medicine which earns billions of dollars from the vaccines.
Here, I agree with one thing, though: it is only orthodox modern medicine that does not know how to effectively and correctly treat— or, rather, handle—infectious diseases, or any other diseases for that matter. They "treat" everything with antibiotics, fever suppressants and painkillers despite the obvious uselessness inappropriateness and dangers o these drugs and without am regard for individuality.
Outbreaks of paralysis during mass vaccination
programs in the USA
Besides the infamous Cutter Incident described above, outbreaks of paralysis
after vaccination continued occurring in the USA.
Nathanson (1984) presented epidemiological aspects of poliomyelitis eradication. He wrote that mass vaccination with oral polio vaccine was begun in the USA in 1963, and the last outbreak of natural poliomyelitis occurred in 1972. Then he alleged that there was only one more outbreak, in 1979, due to the introduction of wild poliovirus to an undervaccinated Amish population. "Paradoxically, eradication occurred even though 5%-10% of the population zero to 1 year of age was unvaccinated and susceptible". First, this statement is inaccurate, because not even 5%-10% of the Amish population are vaccinated (they claim religious exemption to vaccination). Second, the first case of paralytic polio occurred in a nine-month-old Amish baby who became paralysed five days after being given a dose of OPV. Even though the US health authorities opened a vaccination clinic, the Amish residents shunned it. They eradicated the outbreak by giving it free rein and letting it eradicate itself. That's exactly what happened. After all, all outbreaks are self-limiting.
MMWR (1993) reported on the outbreak of 68 cases of poliomyelitis among members of religious communities in The Netherlands. Because members of an affiliated religious community in Alberta, Canada, had direct contact (i.e., travel to and from The Netherlands) with members of the affected community, health authorities in Alberta conducted an investigation during January-February 1993 to determine whether the poliovirus had been imported. The investigation focused on a small rural community in southern Alberta that reported the only cases of poliomyelitis from the province during the last poliomyelitis outbreak in Canada in 1978 (11 cases). The author of this report wrote: "The community comprises members of a religious group that generally opposes vaccination."
Interestingly, according to the MMWR report: "...wild poliovirus type 3 (PV3) was isolated from stool specimens obtained from 21 (47%) of 45 persons (primarily children). Laboratory investigations conducted by the National Center for Enteroviruses in Halifax, including application of molecular technique in collaboration with laboratories at the CDC (Centers for Disease Control), determined that this PV3 was virtually identical to the strain that caused the outbreak in The Netherlands."
Perhaps the most revealing information was unwittingly presented in an article by Schonberger et al. (1984). Their figure 1 shows the annual reported paralytic poliomyelitis case rates for the USA during the period 1951-1982. The graph shows a steady fall in the incidence of paralytic poliomyelitis until 1974-75, when it shot up threefold and remained high (with slight up and down fluctuations) until 1979; then the incidence seemingly fell down again to the 1974 level.
This graph is practically identical to the graphs of whooping cough incidence published by Hutchins et al.
(1988). Their graphs show a steady downward trend in the incidence of (and mortality from) whooping cough until 1976, when the incidence shot up threefold. This coincided with the "nationwide childhood immunization initiative", when individual states were gradually passing legislation requiring three doses of DTP (diphtheria-tetanus-pertussis) vaccine and OPV for school entry, no doubt preceded by an advertising campaign for some time beforehand and accompanied by intensified vaccination activity. The incidence of both whooping cough and polio quite obviously went up threefold when vaccination became virtually mandatory. I see it as clear evidence that the vaccinations caused the recipients to contract the diseases which the vaccines were supposed to prevent.
Paralytic poliomyelitis outbreak in Taiwan
Kim-Farley et al. (1984) described an epidemic of poliomyelitis cases
(1,031) which occurred between 29 May and 31 October 1982, after seven years of
freedom from major outbreaks. Already by 1 September, the outbreak had become
one of the largest reported in Taiwan's history. Importantly, before this
outbreak, approximately 80 per cent of infants had received at
least two doses of trivalent oral polio vaccine before their first
birthday. Because the outbreak occurred in the face of high community-wide
vaccination levels, the CDC (Atlanta, Georgia, USA) was invited to help
determine the extent of the outbreak, why it had occurred and whether OPV was an
effective protective agent. (I have no doubt that the outbreak sent shock waves
through the vaccinators' camp—particularly so, since it was freely admitted and
publicised and could have not been swept under the carpet.)
Kim-Farley and colleagues wrote that Taiwan's total population at the end of 1980 was 18 million, with approximately 400,000 births per year. Persons under the age of five comprised 11 per cent of the population.
Polio was first reported in Taiwan in 1913 and became officially notifiable in 1955. Inactivated polio vaccine (IPV) was introduced in 1958 and OPV in 1963. At the time of the 1982 outbreak, routine vaccination in Taipei and Kao-Hsiung (the two largest cities in Taiwan) consisted of a three-dose OPV schedule before the first birthday. An additional dose at about 18 months was also recommended.
From 1975 to 1981, no fewer than nine cases of paralytic poliomyelitis were reported to the Taiwan health authorities each year. No polio deaths were recorded after 1978 Cases of polio were defined as physician-diagnosed paralytic poliomyelitis. The vaccination status of cases was determined from information supplied on case reports and, importantly, "(vjaccinations received in the 28 days before the onset were not counted because they might have been given after exposure". These represented 65 per cent of the cases. So, most cases were excluded as vaccine-caused.
It is well established that most cases of vaccine-derived paralysis occur after the first dose of any polio vaccine. Marking the cases of paralysis in the recipients of the first dose within 28 days of the vaccination date as "unvaccinated" is not only a major fraud—no doubt designed to "improve" the effectiveness of the vaccine—but it also contravenes the definition of vaccine-associated paralysis as determined by the US Special Advisory Committee (a case which occurred within 30 days of the vaccine dose; Henderson et al., 1964, as above).
The indisputable reality of what happened in Taiwan is that 65 per cent of vaccinees developed paralysis within 28 days of the first vaccine dose, thus confirming observations of others that the majority of vaccine-caused paralysis occurs after the first dose of any vaccine, the polio vaccine being no exception. The case fatality rate was nine per cent. However, this rate was calculated as per total population, even though the definition of polio is "infantile paralysis". It should have been calculated on the numbers of children in the relevant age groups.
Moreover, because before this 1982 outbreak there had been no outbreaks of polio in Taiwan for seven years, it is not likely that all those who developed paralysis within 28 days of the first vaccine dose were already incubating the disease. In addition, less than seven per cent of the surveyed population had not received any OPV.
Equally flawed is the conclusion of the authors that failure to vaccinate, rather than vaccine failure, was the most important risk factor for the polio epidemic in Taiwan.
What sends shivers down my spine is the ease with which the pro-vaccinators got away with an obviously fraudulent analysis of the vaccine-caused outbreak of paralysis. At the same, I praise both the authors and the Lancet for publishing it in a way that enables any intelligent reader to see through the smokescreen and mirrors. John (1985) wrote: "The proposed explanation— namely, pockets of low vaccination coverage sustaining poliovirus transmission and seeding an outbreak (5.8 cases per 100,000—was unconvincing. Cases did not cluster in pockets and, since the mean coverage rate was very high, pockets of low coverage could have been infrequent...Taipei and Kao-Hsiung cities had high incidence despite better vaccination efforts."
Outbreak in Oman
Virtually the same thing as described in Taiwan happened in Oman. Sutter et
al. (1991) and Sutter et al. (1992) described an outbreak of paralytic
poliomyelitis type I (118 cases) between January 1988 and March 1989. They
wrote: "Incidence of poliomyelitis was highest in children younger than 2 years
(87/100 000) despite an immunisation programme that recently had raised coverage
with 3 doses of oral poliovirus vaccine (OPV) among 12-months-old children from
67% to 87%." Despite?
Eighty-seven per cent of case patients in Oman received at least one dose of OPV, and 50 per cent received at least three doses. The authors wrote: "Accumulation of enough children to sustain the outbreak seems to have been due to previous success of the immunisation program in reducing spread of endemic strains, suboptimum efficacy of OPV, and delay in completing the primary immunisation series until 7 months of age. Additionally, the estimated attack rate of infection among children aged 9-23 months exceeded 25% in some regions, suggesting that a substantial proportion of fully vaccinated children had been involved in the chain of transmission."
Their statement that "3 doses of OPV reduced the risk of paralysis by 91%" is facetious: if most cases occur after the first dose, there will be fewer vaccinees left to develop paralysis after the second dose and even fewer after the third.
While alleging that "(widespread use of oral poliovirus vaccine (OPV) has led
to the virtual elimination of paralytic poliomyelitis in industrialised
countries, in addition to substantial reduction in the incidence of the disease
in the developing world", the authors also stated: "However, the efficacy of OPV
in inducing humoral immunity against
poliovirus type 1 and 3 in some countries has been lower than expected. Recent
outbreaks in The Gambia, Brazil, and Taiwan have also raised concern that
primary reliance on routine immunisation may be inadequate to achieve the goal
of eradicating wild poliovirus infection globally by the year 2000."
The authors also wrote: "...vaccination coverage with 3 doses of OPV at the time of the outbreak was 87% for children aged 12 months. Based on the number of reported cases, the overall attack rate of paralytic disease in children 9-23 months was 57/100 000. There was no correlation between vaccination coverage and attack rates by region; the region with (the] then highest attack rate (Batinah, 117/100 000) had one of the highest coverage rates (88%), whereas the region with the-lowest coverage (Capital, 71%) had a low attack rate."
No correlation? In fact, there was a perfect correlation showing that the vaccines caused the outbreak, the highest incidence of paralysis occurring with the highest compliance.
• Peterson L], Benson WW, Graeber FO (1955).
Vaccination-induced poliomyelitis in Idaho.
Preliminary report of experience with Salk
poliomyelitis vaccine. JAMA 159(4):241-244.
• Henderson DA, Witte JJ, Morris L. Langmuir AD
(1984). Paralytic disease associated with oral polio
vaccines. JAMA 190(l):41-48.
• Nathanson N (1984). Epidemiologic Aspects of
Poliomyelitis Eradication. Rev of Infect Dis 1984
May-June; 6(Suppl2):S308- S312.
• Special Advisory Committee on Oral Poliomyelitis
Vaccine to the Surgeon General of the Public Health
Service. Oral Poliomyelitis Vaccines. JAMA
190(l):49-l.
• Bradford Hill A (1965). Environment and disease:
Association or causation? PracRoy SocMed 1965:295-300.
• Schonberger LB, Kaplan J, Kim-Farley R, Moore M,
Eddins DL, Hatch M (1984). Control of paralytic
poliomyelitis in the United States. Rev Infect Dis 6
(Suppl2):S4240-S426.
• Hutchins SS, Cochi SL, Brink EW,