All Human Blood Is Infected With Bacteria
(Photo #1. Erythrocyte (red blood cell) phenomenon. The release from the
interior of the large red blood cell (in center) of tiny round bodies into the
plasma. Phase contrast photo.)
(8-2-07)Bacteria are everywhere. Our mouths, throat, nose, ears all harbor
germs. A few bacteria in the urine are considered normal; and fecal material is
largely composed of bacteria. But what about the blood?
Under "normal" conditions physicians generally believe human blood is "sterile."
The idea of bacteria living in the blood normally is largely considered medical
heresy.
Recently Tom Detwiler of West Sayville, New York, sent me an email with three
microphotographs he took from a video of a drop of his blood studied with "phase
contrast" and a "dark field microscope." The photos clearly showed round and
beaded forms emanating from red blood cells (erythrocytes), strongly suggesting
the appearance of bacteria. (Figures 1-3.) Detwiler is a biochemist with 18
years experience working as a microbiologist for a pharmaceutical company.
He has an avid interest in dark field microscopy and microphotography. His
blood findings were in accord with my own research documenting and photographing
bacteria in many forms of cancer and other immune diseases.
Photo #1. Erythrocyte (red blood cell) phenomenon. The release from the interior
of the large red blood cell (in center) of tiny round bodies into the plasma.
Phase contrast photo.
The idea that bacteria cause cancer is considered medical heresy. However,
continuing research dating back to the late nineteenth century indicates that "pleomorphic"
(variably-appearing) bacteria are implicated in cancer. Over the past few
decades more and more studies have confirmed that similar bacteria can be found
in the blood.
Details of a century of research showing bacteria in cancer can be found in my
two books: The Cancer Microbe and Four Women Against Cancer: Although I
personally have no experience with blood research and dark field microscopy,
there are studies in the scientific literature that support Detwiler's
observations.
The evidence for blood bacteria
In a series of papers from 1972-1979, the late Guido Tedeschi and his colleagues
at the University of Camerino in Italy presented remarkable findings indicating
universal infection of the blood with staphylococcus-like and streptococcal-like
microbes.
Photo #2. Erythrocyte phenomenon. The red blood cell in the center has a smaller
round vacuole with moving bodies within. Phase contrast photo
In 1977 Domingue and Schlegel confirmed "the existence of a novel bacteriologic
system" in the blood. They cultured staphylococcal-like bacteria and filamentous
cocco-bacillary forms from 71% of the blood specimens from ill patients; and
from 7% of supposedly healthy people. These pleomorphic bacteria grew out of
round complex "dense bodies" and developed into "ordinary bacteria." The authors
concluded: "These organisms may represent an adaptation of certain bacteria to
life in the blood." Their full report, which contains pictures (full-screen) of
the bacteria grown from blood, is online at: http://www.pubmedcentral.nih.gov/pagerender.fcgi?artid=421412&pageindex=1#page
In the 1990's microbiologists Phyllis E Pease and Janice Tallak termed these
blood bacteria as "the human bacterial endoparasite." Finnish researchers
Kajander et al. describe them as "novel bacteria-like particles," which are
staphylococcal-like. Like viruses, these tiny bacterial forms were able to pass
through bacterial filters, and were exceedingly difficult to culture. The
Finnish team called them "nanobacteria" and proposed a tentative name for the
novel agent: Nanobacterium sanquineum.
In 2002 McLaughlin et al. presented a study entitled "Are there naturally
occurring pleomorphic bacteria in the blood of healthy humans?" The researchers
were surprised to discover bacteria in the blood "since it is generally
acknowledged that the blood stream in healthy humans is a sterile environment,
except when there is a breach in the integrity of the tissue membranes."
Photo#3: Overview of the erythrocyte (red blood cell) phenomenon. Numerous small
buds emanating from the red blood cells are visible, as well as smaller
unattached darkly-colored buds in the surrounding solution.
A few critics claim that Detwiler's forms are contaminating bacteria or "artifacts"
that are not microbial in origin. However, in view of recent studies, it is
clear that bacteria do exist in human blood. Furthermore, bacteria are large
enough to be observed microscopically. Thus, Detwiler's observation of bacteria
appears credible.
Bechamp, Enderlein, and Reich
In actuality, the study of the blood and the microbes that emanate from blood
cells was the subject of extensive examination in the late nineteenth century by
Antoine Bechamp (1816-1908). At the time, it was widely believed that the cell
was the smallest unit of life. But the French professor insisted it was the tiny
granules within the cell (which he called "microzymas") which comprised the
smallest unit of life. In Bechamp's heretical view, bacteria could develop from
these microzymas under appropriate conditions. His book, The Blood and its Third
Element, is still in print.
German zoologist Gunther Enderlein (1872-1968) devoted many years to the dark
field microscopic study of the blood. The complicated "life cycle" of these
blood bacteria is described in his book Bacterien-Cyclogenie (1925).
A controversial blood test is named after Enderlein; and in 1993 a bi-lingual
German and English translation of his research was published entitled: Blood
Examination in Darkfield: According to Prof. Dr. Gunther Enderlein. The book is
heavily illustrated with color photos of bacteria in the blood. Although it is a
difficult read due to Enderlein's complex terminology of the various pleomorphic
blood forms, it is considered an essential work for practitioners performing the
highly controversial "live blood cell analysis" of human blood. Enderlein
believed that the sterility of the blood was an invalid assumption on the part
of medical science. He claimed the blood elements of all vertebrates, up to and
including man- even the healthiest-have been subjected to a massive infestation
of primitive-phase "endobionts."
The infection of the blood by bacteria is commonly accepted as fact by some
alternative medical practitioners. However, attempts to make a medical diagnosis
by dark field examination of the patient's blood is considered a scam and "sheer
hokum" by most medical doctors. A highly critical review of this procedure
entitled "Live blood cell analysis;Another gimmick to sell you something," by
Stephen Barrett MD, can be found on quackwatch.org.
Other controversial researchers who made outstanding contributions to the study
of pleomorphic microbes in human disease include Raymond Royal Rife, Wilhelm
Reich and others. (For details of the scientific achievements of these men,
Google bechamp.org; professorenderlein.com; rife.org and wilhelmreichmuseum.org.
Also see: "Synthesis of the work of Enderlein, Bechamp, and other pleomorphic
researchers", by Dr Karl Poehlman at: http;//www.explorepub.com/articles/enderlien3.html;
"Raymond Royal Rife" by Jeff Rense at: http://www.rense.com/health/rife.htm; and
"Dr. Wilhelm Reich: Scientific Genius or Medical Madman"? by Alan Cantwell at
http://whale.to/a/cantwell.html ) In addition, the exhaustive and highly
controversial "somatid" work of Quebec biologist Gaston Naessens should be
noted; and details of his research can be found on the Internet.
Pitfalls in the microbiology of the blood
The microbiology of the blood is intimately related to the proposed bacterial
cause of cancer. The highly controversial microbiology of cancer was fully
explored during the 1950s, 60s, and 70s by four largely ignored women
scientists, namely Virginia Livingston MD, microbiologist Eleanor
Alexander-Jackson PhD, cell cytologist Irene Diller PhD, and biochemist Florence
Siebert PhD. These four remarkable scientists all recognized the extreme
importance of bacteria in the blood. Details of their research appear in Four
Women Against Cancer, and subtitled Bacteria, Cancer and the Origin of Life.
Much of the criticism against bacteria in cancer and in human blood revolves
around the inability of scientists to precisely identify the species and/or
multiple species of bacteria involved in the process. Human blood is undoubtedly
an aquarium for multiple kinds of bacteria, all intimately interacting with each
other and presumably passing genetic material back and forth between each other
(via "plasmids" and "bacteriophages").
In 2001, a molecular study by Nikkari et al. found bacterial DNA in the blood.
The inconclusive report was titled, "Does blood of healthy subjects contain
bacterial ribosomal DNA?" The researchers were unsure of the origin of these
bacterial genetic sequences. Not surprisingly, none of the published blood
research cited in this present report was mentioned by Nikkari.
Further complicating the question of blood bacteria is the century-old
unresolved controversy of bacterial monomorphism versus pleomorphism. Most
microbiologists and doctors believe bacteria multiply by simply dividing in half
(binary fission). But pleomorphists believe that the reproduction of bacteria is
highly complex and involves various growth forms within the body that are not
recognized and accepted by traditional science. It is not possible to study the
microbiology of blood (and cancer) without a knowledge of bacterial pleomorphism.
Yet another stumbling block is the terminology used to describe the various
bacterial forms seen in the blood and the tissue. Bacteria in the blood have
been described by various researchers as mycoplasma, L-forms, cell wall
deficient bacteria, nanobacteria, and a host of other confusing and often
synonymous terms.
Blood bacteria are thought to be connected with the origin of life. Livingston
(1906-1990) believed these microbes were responsible not only for the initiation
of life, but also acted as terminators leading to death, admittedly a difficult
concept for most people to consider. Wilhelm Reich (1897-1957) referred to
bacteria emanating from energy-depleted cells as "T-bacilli", the "T" derived
from the German word "Tod", meaning death. He found T-bacilli in both healthy
and sick individuals. However, in the blood of sick people they were more
numerous. Reich devised a blood test to measure the vitality of blood. (For
details, Google: Reich blood test)
Detwiler feels that the demonstration of bacteria in normal blood is frightening
to many people, who would prefer not to know such things. In addition, the idea
might be scary for people who receive blood transfusions.
Is human blood sterile?
Although it may be comforting to believe that human blood is sterile, common
sense indicates it isn't. According to bloodbook.com, five to ten percent of the
cases of HIV infection are transmitted worldwide through the transfusion of
infected blood or tainted blood products. Other diseases that can be transmitted
by transfusion include viral, hepatitis B and C, syphilis, malaria and Chagas'
disease. Each year bad transfusions cause an estimated 8 to 16 million hepatitis
B virus infections, 2.3 to 5 million hepatitis C virus infections and 80,000 to
160,000 HIV infections.
Currently in the U.S. all blood donors are tested for HIV-1 and HIV-2, HTLV-1,
hepatitis B and C, and syphilis. Excluded from donating blood are people with a
history of IV drug abuse and hepatitis, and those with male homosexual activity
since 1977. Blood is not tested for West Nile virus, nor for herpes viruses such
as human herpes-8 virus, the virus causing Kaposi's sarcoma.
Many blood banks encourage patients to donate their own blood prior to the
scheduled date of an elective surgery, in order to minimize the possibility of
transfer of viruses.
Blood bacteria and human disease
Despite a century of modern medicine we know little about the cause of cancer
and the many chronic diseases that accompany old age. Heart and blood vessel
disease (arteriosclerosis) are the most common causes of death in the elderly.
Could blood bacteria contribute to the cellular changes in the heart and blood
vessels?
It is said that if he lives long enough every man will develop prostate cancer.
Thus, there must be something intrinsic in every man that causes this. Could it
be the build-up of bacteria in the blood, coupled with declining cell vigor, as
claimed by Reich? For new research pointing to the possible connection between
bacteria and prostate cancer, go to: http://www.rense.com/general67/four.htm
Dr. Virginia Livingston thought blood bacteria served as a way for Mother Nature
to force old people off the planet in order to make more room for younger and
healthier people.
Pleomorphic bacteria have a "life cycle" and so do we. We ourselves are "pleomorphic"
in that we begin life as microscopic beings and grow to produce new life by
mixing our genetic material with others. When we die, we hope to continue as
"spirit" with eternal life. In his experiments Wilhelm Reich was astonished to
discover that it was impossible to destroy the smallest living forms of life.
The inability of modern medicine to recognize the reality and importance of
blood bacteria is the great tragedy of modern science.
Hopefully, this communication and the intriguing photos by Tom Detwiler will
encourage others to explore the evidence for bacteria in the blood - and the
idea that these bacteria are connected with the origin of life itself.
ADDENDUM: Tom Detwiler's "Activation Method of the Blood"
Attached is the so-called activation procedure that I've been using. I've been
working with variants of this procedure for a number of years. The results are
striking, more viscerally effective than electron micrographs. I have long felt
that if it was published 60 years ago we may not be in the current situation on
this matter.
Section 1 is self explanatory.
Section 2 is recommended for more careful consideration of the matter.
**************
I. Activation of a microbiological factor associated with the erythrocyte
Incubation of a blood sample in buffer solution demonstrates an association of
the majority of erythrocytes with a microbiological factor. A procedure to
activate this factor is a preparation of 25 uL freshly drawn blood mixed with
0.4 mL NaHPO4 [0.18M] pH 7; followed with incubation in a 50C water bath for 60
minutes. The result is viewed with phase contrast.
A blood preparation from a normal healthy individual will display the following
phenomena:
1. Evolution of spicules from erythrocytes.
2. Budding of erythrocytes.
3. The release from vesicles within the erythrocyte of forms resembling cocci,
often in chains.
4. Large vesicles containing motile particles within erythrocytes.
5. Motile particles appearing in the plasma solution.
Remarks
Similar results can be obtained over a pH range including 4.5 - 7.5. The lower
end of the temperature range to evoke this is about 42C. Isotonic sodium citrate
at pH 7 is also effective.
Several assumptions are utilized to facilitate this presentation; that the
expressed microbiological forms from the blood of a healthy individual are
predominantly that of one microorganism with a capability of different formats
of expression.
The activation phenomena can be viewed as a destabilization of the homeostatic
maintenance of a microorganism within the erythrocyte. This microorganism
appears to be capable of exiting the cell in several forms.
The evolution of erythrocyte spicules/filaments is regarded as a biophysical
property of the erythrocyte membrane.
A noticeable increase in particles can observed in slide preparations of whole
blood over the course of several hours. The blood would appear to have an innate
capability of generation of particles.
The results obtained by this procedure support conclusions reached by some
previous investigators. It may be reasonable to assume that this phenomena has
been viewed previously, and possibly interpreted in similar fashion.
II. Biological control
An autoclaved isotonic solution of sodium phosphate or sodium citrate will
produce the activation of the erythrocyte associated microorganism as described.
Attention to the possible biological content of the solution used is necessary
to increase the confidence level concerning a particular observation, or in
performing further work with this microbe.
Biological particles capable of proliferation will frequently demonstrate an
ability to withstand an autoclave cycle. Reliance on autoclave processing for
biological control allows the possibility of significant biological factors
entering an experimental preparation through solutions or surfaces. As there are
indications that this erythrocyte microorganism is integrated into the plasma
response to biological factors, there is more than the concern of introducing
life forms into a preparation containing a specific microbe to be considered.
The following approach was used to produce a sodium phosphate solution
containing minimal biological factors.
Water was provided by distillation, by a system configured to minimize water
droplet "carry over" with the steam vapor. The distillation system used was
modified by the placement of a water droplet trap in the vapor path. Frequent
maintenance of the distillation flask reduced the numbers of a particle life
form appearing in the distillate to a level difficult to detect by dark field
inspection (40x objective; LT 1000/mL).
Disodium phosphate has a desirable property of withstanding considerable heat
without polymerizing into a polyphosphate. Sodium phosphate solution [0.18 M]
was prepared from disodium phosphate that was previously brought to 230 C for 2
hours. The solution was then pH adjusted to 7 with 1N HCl, and used immediately.
Glassware was warmed at 230 C for 2 hours.
References:
Domingue GJ, Schlegel JU.Novel bacterial structures in human blood: cultural
isolation. Infect Immun. 1977 Feb;15(2):621-7.
Kajander EO, Tahvanainen E, Kuronen I and Ciftcioglu N.
Comparison of Staphylococci and Novel Bacteria-Like Particles from Blood. Zbl.
Bakt. Suppl. 26, 1994.
McLaughlin RW, Vali H, Lau PC, Palfree RG, De Ciccio A, Sirois M, Ahmad D,
Villemur R, Desrosiers M, Chan EC. Are there naturally occurring pleomorphic
bacteria in the blood of healthy humans? J Clin Microbiol. 2002
Dec;40(12):4771-5.
Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy
subjects contain bacterial ribosomal DNA? J Clin Microbiol. 2001
May;39(5):1956-9.
Pease PE, Tallack JE. A permanent endoparasite of man. 1. The silent zoogleal/symplasm/L-form
phase. Microbios. 1990;64(260-261):173-80.
Tedeschi GG, Di Iorio EE. Penetration and interaction with haemoglobin of
corynebacteria-like microorganisms into erythrocytes in vitro. Experientia. 1979
Mar 15;35(3):330-2.
Tedeschi GG, Bondi A, Paparelli M, Sprovieri G. Electron microscopical evidence
of the evolution of corynebacteria-like microorganisms within human
erythrocytes. Experientia. 1978 Apr 15;34(4):458-60.
Tedeschi GG, Amici D, Sprovieri G, Vecchi A. Staphylococcus epidermidis in the
circulating blood of normal and thrombocytopenic human subjects: immunological
data. Experientia. 1976 Dec 15;32(12):1600-2.
Tedeschi GG, Amici D. Mycoplasma-like microorganisms probably related to L forms
of bacteria in the blood of healthy persons. Cultural, morphological and
histochemical data.Ann Sclavo. 1972 Jul-Aug;14(4):430-42.
[Alan Cantwell M.D. is retired dermatologist. He is the author of The Cancer
Microbe: The Hidden Killer in Cancer, AIDS, and Other Immune Diseases, and Four
Women Against Cancer: Bacteria, Cancer and the Origin of Life, both published by
Aries Rising Press, PO Box 29532, Los Angeles, CA 90029 (www.ariesrisingpress.com).
His books are available from Amazon.com and via Book Clearing House at
1-800-431-1579.
Email address: alancantwell@sbcglobal.net