


Chapter 4

LIE-ADMISSIBLE BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

4.1 INTRODUCTION
4.1.1 The Scientific Imbalance Caused by

Irreversibility
As recalled in Chapter 1, physical, chemical or biological systems are called

irreversible when their images under time reversal t → −t are prohibited by
causality and/or other laws, as it is generally the case for nuclear transmuta-
tions, chemical reactions and organism growth.

Systems are called reversible when their time reversal images are as causal
as the original ones, as it is the case for planetary and atomic structures when
considered isolated from the rest of the universe (see reprint volume [1] on
irreversibility and vast literature quoted therein).

Another large scientific imbalance of the 20-th century studied in this mono-
graph is the treatment of irreversible systems via the mathematical and physi-
cal formulations developed for reversible systems, since these formulations are
themselves reversible, resulting in serious limitations in virtually all branches
of science.

The problem is compounded by the fact that all used formulations are
of Hamiltonian type, under the awareness that all known Hamiltonians are
reversible (since all known potentials, such as the Coulomb potential V (r),
etc., are reversible).

This scientific imbalance was generally dismissed in the 20-th century with
unsubstantiated statements, such as “irreversibility is a macroscopic occur-
rence that disappears when all bodies are reduced to their elementary con-
stituents”.

These academic beliefs have been disproved by Theorem 1.3.3 according to
which a classical irreversible system cannot be consistently decomposed into a
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finite number of elementary constituents all in reversible conditions and, vice-
versa, a finite collection of elementary constituents all in reversible conditions
cannot yield an irreversible macroscopic ensemble.

The implications of the above theorem are quite profound because it estab-
lishes that, contrary to academic beliefs, irreversibility originates at the most
primitive levels of nature, that of elementary particles, and then propagates all
the way to our macroscopic environment.

4.1.2 The Forgotten Legacy of Newton, Lagrange and
Hamilton

The scientific imbalance on irreversibility was created in the early part of
the 20-th century when, to achieve compatibility with quantum mechanics and
special relativity, the entire universe was reduced to potential forces and the
analytic equations were “truncated” with the removal of the external terms.

In reality, Newton [2] did not propose his celebrated equations to be re-
stricted to forces derivable from a potential F = ∂V/∂r, but proposed them
for the most general possible forces,

ma ×
dvka

dt
= Fka(t, r, v), k = 1, 2, 3; a = 1, 2, . . . , N, (4.1.1)

where the conventional associative product of numbers, matrices, operators,
etc. is continued to be denoted hereon with the symbol × so as to distinguish
it from numerous other products needed later on.

Similarly, to be compatible with Newton’s equations, Lagrange [3] and
Hamilton [4] decomposed Newton’s force into a potential and a nonpotential
component, represented all potential forces with functions today known as
the Lagrangian and the Hamiltonian, and proposed their celebrated equations
with external terms,

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= Fak(t, r, v), (4.1.2a)

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

+ Fak(t, r, p), (4.1.2b)

L = Σa
1
2
× ma × v2

a − V (t, r, v), H = Σa
p2

a

2 × ma
+ V (t, r, p), (4.1.2c)

V = U(t, r)ak × vk
a + Uo(t, r), F (t, r, v) = F (t, r, p/m). (4.1.2d)

More recently, Santilli [5] conducted comprehensive studies on the integra-
bility conditions for the existence of a potential or a Lagrangian or a hamilto-
nian, called conditions of variational selfadjointness. These study permit the
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rigorous decomposition of Newtonian forces into a component that is varia-
tionally selfadjoint (SA) and a component that is not (NSA),

ma ×
dvka

dt
= FSA

ka (t, r, v) + FNSA
ka (t, r, v). (4.1.3)

Consequently, the true Lagrange and Hamilton equations can be more tech-
nically written[ d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

]SA
= FNSA

ak (t, r, v), (4.1.4a)

[drk
a

dt
− ∂H(t, r, p)

∂pak

]SA
= 0,

[dpak

dt
+

∂H(t, r, p)
∂rk

a

]SA
= FNSA

ak (t, r, p), (4.1.4b)

The forgotten legacy of Newton, Lagrange and Hamilton is that irreversibil-
ity originates precisely in the truncated NSA terms, because all known potential-
SA forces are reversible. The scientific imbalance of Section 1.3 is then due
to the fact that no serious scientific study on irreversibility can be done with
the truncated analytic equations and their operator counterpart, since these
equations can only represent reversible systems.

Being born and educated in Italy, during his graduate studies at the Uni-
versity of Torino, the author had the opportunity of studying in the late 1960s
the original works by Lagrange that were written precisely in Torino and most
of them in Italian.

In this way, the author had the opportunity of verifying Lagrange’s analytic
vision of representing irreversibility precisely via the external terms, due to
the impossibility of representing all possible physical events via the sole use
of the Lagrangian, since the latter was solely conceived for the representation
of reversible and potential events. As the reader can verify, Hamilton had,
independently, the same vision.

Consequently, the truncation of the basic analytic equations caused the
impossibility of a credible treatment of irreversibility at the purely classical
level. The lack of a credible treatment of irreversibility then propagated at
the subsequent operator level.

It then follows that quantum mechanics cannot possibly be used for serious
studies on irreversibility because the discipline was constructed for the descrip-
tion of reversible quantized atomic orbits and not for irreversible systems.

In plain terms, while the validity of quantum mechanics for the arena of its
original conception and construction is beyond scientific doubt, the assumption
of quantum mechanics as the final operator theory for all conditions existing
in the universe is outside the boundaries of serious science.

This establishes the need for the construction of a broadening (generaliza-
tion) of quantum mechanics specifically conceived for quantitative studies of
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irreversibility. Since reversible systems are a particular case of irreversible
ones, the broader mechanics must be a covering of quantum mechanics, that
is, admitting the latter under a unique and unambiguous limit.

It is easy to see that the needed broader mechanics must also be a covering of
the Lie-isotopic formulations, thus being a new branch of hadronic mechanics.

4.1.3 Early Representations of Irreversible Systems
As reviewed in Section 1.5.2, the brackets of the time evolution of an observ-

able A(r, p) in phase space according to the analytic equations with external
terms,

dA

dt
= (A, H, F ) =

∂A

∂rk
a

× ∂H

∂pka
− ∂H

∂rk
a

× ∂A

∂pka
+

∂A

∂rk
a

× Fka, (4.1.5)

violate the right associative and scalar laws.
Therefore, the presence of external terms in the analytic equations causes

not only the loss of all Lie algebras in the study of irreversibility, but actually
the loss of all possible algebras as commonly understood in mathematics.

To resolve this problem, the author initiated a long scientific journey be-
ginning with his graduate studies at the University of Torino, Italy, following
the reading of Lagrange’s papers.

The original argument [7-9], still valid today, is to select analytic equations
characterizing brackets in the time evolution verifying the following conditions:

(1) The brackets of the time evolution must verify the right and left asso-
ciative and scalar laws to characterize an algebra;

(2) Said brackets must not be invariant under time reversal as a necessary
condition to represent irreversibility ab initio;

(3) Said algebra must be a covering of Lie algebras as a necessary condition
to have a covering of the truncated analytic equations, namely, as a condi-
tion for the selected representation of irreversibility to admit reversibility as a
particular case.

Condition (1) requires that said brackets must be bilinear, e.g., of the form
(A, B) with properties

(n × A, B) = n × (A, B), (A, m × B) = m × (A, B); n, m ∈ C, (4.1.6a)

(A × B, C) = A × (B, C), (A, B × C) = (A, B) × C. (4.1.6b)

Condition (2) requires that brackets (A, B) should not be totally antisymmet-
ric as the conventional Poisson brackets,

(A, B) �= −(B, A), (4.1.7)

because time reversal is realized via the use of Hermitean conjugation.
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Condition (3) then implies that brackets (A, B) characterize Lie-admissible
algebras in the sense of Albert [10], namely, the brackets are such that the
attached antisymmetric algebra is Lie.1

[A, B]∗ = (A, B) − (B, A) = Lie. (4.1.8)

In particular, the latter condition implies that the new brackets are formed by
the superposition of totally antisymmetric and totally symmetric brackets,

(A, B) = [A, B]∗ + {A, B}∗. (4.1.9)

It should be noted that the operator realization of brackets (A, B) is also
Jordan-admissible in the sense of Albert [7], namely, the attached symmet-
ric brackets {A, B}∗ characterize a Jordan algebra. Consequently, hadronic
mechanics provides a realization of Jordan’s dream, that of seeing his algebra
applied to physics.

However, the reader should be aware that, for certain technical reasons be-
yond the scope of this monograph, the classical realizations of brackets (A, B)
are Lie-admissible but not Jordan-admissible. Therefore, Jordan-admissibility
appears to emerge exclusively for operator theories.2

After identifying the above lines, Santilli [9] proposed in 1967 the following
generalized analytic equations

drk
a

dt
= α × ∂H(t, r, p)

∂pak
,

dpak

dt
= −β × ∂H(t, r, p)

∂rk
a

, (4.1.10)

(where α and β are real non-null parameters) that are manifestly irreversible.
The brackets of the time evolution are then given by

dA

dt
= (A, H) =

1More technically, a generally nonassociative algebra U with elements a, b, c, . . . and abstract product
ab is said to be Lie-admissible when the attached algebra U− characterized by the product [a, b] =
ab − ba verifies theLie axioms

[a, b] = −[b, a],

[[a, b], c] + [[b, c], a] + [[c, b], a] = 0.

2More technically, a generally nonassociative algebra U with elements a, b, c, . . . and abstract
product ab is said to be Jordan-admissible when the attached algebra U+ characterized by the
product {a, b} = ab + bA verifies the Jordan axioms

{a, b} = {b, a},

{{a, b}, a2} = {a, {b, a2}}.
In classical realizations of the algebra U the first axiom of Jordan-admissibility is generally verified
but the second is generally violated, while in operator realizations both axioms are generally verified.
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= α × ∂A

∂rk
a

× ∂H

∂pka
− β × ∂H

∂rk
a

× ∂A

∂pka
, (4.1.11)

whose brackets are manifestly Lie-admissible, but not Jordan-admissible as
the interested reader is encouraged to verify.

The above analytic equations characterize the time-rate of variation of the
energy

dH

dt
= (α − β) × ∂H

∂rk
a

× ∂H

∂pka
. (4.1.12)

Also in 1967, Santilli [7,8] proposed an operator counterpart of the preced-
ing classical setting consisting in the first known Lie-admissible parametric
generalization of Heisenberg’s equation in the following infinitesimal form

i × dA

dt
= (A, B) = p × A × H − q × H × A =

= m × (A × B − B × A) + n × (A × B + B × A), (4.1.13a)

m = p + q, n = q − p, (4.1.13b)

where p, q, p ± q are non-null parameters, with finite counterpart

A(t) = ei×H×q × A(0) × e−i×p×H . (4.1.14)

Brackets (A, B) are manifestly Lie-admissible with attached antisymmetric
part

[A, B]∗ = (A, B) − (B, A) = (p − q) × [A, B]. (4.1.15)

The same brackets are also Jordan-admissible as interested readers are encour-
aged to verify.

The resulting time evolution is then manifestly irreversible (for p �= q) with
nonconservation of the energy

i × dH

dt
= (H, H) = (p − q) × H × H �= 0, (4.1.16)

as necessary for an open system.
Subsequently, Santilli realized that the above formulations are not invariant

under their own time evolution because Eq. (4.1.11) is manifestly nonunitary.
The application of nonunitary transforms to brackets (4.1.12) then led to

the proposal in memoir [11,12] of 1978 of the following Lie-admissible operator
generalization of Heisenberg equations in their infinitesimal form

dA

dt
= A × P × H − H × Q × A = (A, H)∗, (4.1.17)

with finite counterpart

A(t) = ei×H×Q × A(0) × e−i×P×H , (4.1.18)
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where
P = Q†. (4.1.19)

where P , Q and P ± Q are now nonsingular operators (or matrices), and
Eq. (4.1.16b) is a basic consistency condition explained later on in this section.

Eqs. (4.1.15)–(4.1.16) are the fundamental equations of hadronic mechanics.
Their basic brackets are manifestly Lie-admissible and Jordan admissible with
structure

(A, B)∗ = A × P × B − B × Q × A =

= (A × T × B − B × T × A) + (A × R × B + B × R × A), (4.1.20a)

T = P + Q, R = Q − P. (4.1.20b)

As indicated in Section 1.5.2, it is easy to see that the application of a
nonunitary transform to the parametric brackets (4.1.11) leads precisely to the
operator brackets (4.1.18) and that the application of additional nonunitary
transforms preserves their Lie-admissible and Jordan-admissible characters.
Consequently, fundamental equations (4.1.15)–(4.1.18) are “directly universal”
in the sense of Lemma 1.5.2.

However, the above equations are not invariant and, consequently, are af-
flicted by the catastrophic inconsistencies of Theorem 1.5.2.

Moreover, in the form presented above, the dynamical equations are not
derivable from a variational principle. Consequently, they admit no known
unique map into their operator counterpart.

In view of these insufficiencies, said equations cannot be assumed in the
above given form as the basic equations of any consistent physical theory.

4.2 ELEMENTS OF SANTILLI
GENOMATHEMATICS AND ITS ISODUAL

4.2.1 Genounits, Genoproducts and their Isoduals
The “direct universality” of Eq. (4.1.15) voids any attempt at seeking fur-

ther generalization in the hope of achieving invariance, since any nontrivial
generalization would imply the loss of any algebra in the brackets of the time
evolution with consequential inability to achieve any physically meaningful
theory.

The preceding occurrences leave no alternative other than that of seeking a
fundamentally new mathematics permitting Eq. (4.1.15) to achieve the needed
invariance.

After numerous attempts and a futile search in the mathematical literature,
Santilli proposed in Refs. [11,12] of 1978 the construction of a new mathe-
matics specifically conceived for the indicated task, that eventually reached
mathematical maturity for numbers only in paper [13] of 1993, mathematical
maturity for the new differential calculus only in memoir [14] of 1996, and,
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finally, an invariant formulation of lie-admissible formulations only in paper
[15] of 1997.

The new Lie-admissible mathematics is today known as Santilli genomath-
ematics, where the prefix “geno” suggested in the original proposal [11,12] is
used in the Greek meaning of “inducting” new Axioms (as compared to the
prefix “iso” of the preceding chapter denoting the preservation of the axioms).

The basic idea is to lift the isounits of the preceding chapter into a form that
is still nowhere singular, but non-Hermitean, thus implying the existence of two
different generalized units, today called Santilli genounits for the description
of matter, that are generally written [13]

Î> = 1/T̂>, <Î = 1/<T̂ , (4.2.1a)

Î> �=< Î , Î> = (<Î)†, (4.2.1b)

with two additional isodual genounits for the description of antimatter [14]

(Î>)d = −(Î>)
†

= −<Î = −1/<T̂ , (<Î)d = −Î> = −1/T̂>. (4.2.2)

Jointly, all conventional and/or isotopic products A×̂B among generic quan-
tities (numbers, vector fields, operators, etc.) are lifted in such a form to admit
the genounits as the correct left and right units at all levels, i.e.,

A > B = A × T̂> × B, A > Î> = Î> > A = A, (4.2.3a)

A < B = A ×< T̂ × B, A << Î =< Î < A = A, (4.2.3b)

A >d B = A × T̂>d × B, A >d Î>d = Î>d >d A = A, (4.2.3c)

A <d B = A ×< T̂ d × B, A <d <Îd = <Îd <d A = A, (4.2.3d)

for all elements A, B of the set considered.
As we shall see in Section 4.3, the above basic assumptions permit the

representation of irreversibility with the most primitive possible quantities,
the basic units and related products.

In particular, as we shall see in Section 4.3 and 4.4, genounits permit an
invariant representation of the external forces in Lagrange’s and Hamilton’s
equations (4.2.2). As such, they are generally dependent on time, coordi-
nates, momenta., wavefunctions and any other needed variable, e.g., Î> =
Î>(t>, r>, p>, ψ>, . . . ).

In fact, the assumption of all ordered product to the right > represents mat-
ter systems moving forward in time, the assumption of all ordered products
to the left < represents matter systems moving backward in time, with the
irreversibility being represented ab initio by the inequality A > B �= A < B.
Similar representation of irreversible antimatter systems occurs via isoduali-
ties.
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4.2.2 Genonumbers, Genofunctional Analysis and
their Isoduals

The author has repeatedly indicated in his writings that “there cannot be
a really new physical theory without a new mathematics, and there cannot be
a really new mathematics without new numbers”.

Genomathematics began to reach maturity with the discovery made, ap-
parently for the first time in paper [13] of 1993, that the axioms of a field still
hold under the ordering of all products to the right or, independently, to the
left.

This unexpected property permitted the formulation of new numbers, more
general than the isodual numbers of Chapter 2 and the isonumbers of Chapter
3, that can be expressed via the following:

DEFINITION 4.2.1 [13]: Let F = F (a,+,×) be a field of characteristic
zero as per Definitions 2.2.1 and 3.2.1. Santilli’s forward genofields are rings
F̂> = F̂ (â>, +̂>, ×̂>) with: elements

â> = a × Î>, (4.2.4)

where a ∈ F , Î> = 1/T̂> is a non singular non-Hermitean quantity (number,
matrix or operator) generally outside F and × is the ordinary product of F ;
the genosum +̂> coincides with the ordinary sum +,

â>+̂>b̂> ≡ â> + b̂>, ∀â>, b̂> ∈ F̂>, (4.2.5)

consequently, the additive forward genounit 0̂> ∈ F̂ coincides with the ordinary
0 ∈ F ; and the forward genoproduct > is such that Î> is the right and left
isounit of F̂>,

Î>×̂â> = â> > Î> ≡ â>, ∀â> ∈ F̂>. (4.2.6)

Santilli’s forward genofields verify the following properties:
1) For each element â> ∈ F̂> there is an element â>−1̂>

, called forward
genoinverse, for which

â> > â>−Î>
= Î>, ∀â> ∈ F̂>; (4.2.7)

2) The genosum is commutative

â>+̂>b̂> = b̂>+̂>â>, (4.2.8)

and associative

(â>+̂>b̂>) +> ĉ> = â>+̂>(b̂>+̂>ĉ>), ∀â, b̂, ĉ ∈ F̂ ; (4.2.9)



314

3) The forward genoproduct is associative

â> > (b̂> > ĉ>) = (â> > b̂>) > ĉ>, ∀â>, b̂>, ĉ> ∈ F̂>; (4.2.10)

but not necessarily commutative

â> > b̂> �= b̂> > â>, (4.2.11)

4) The set F̂> is closed under the genosum,

â>+̂>b̂> = ĉ> ∈ F̂>, (4.2.12)

the forward genoproduct,

â> > b̂> = ĉ> ∈ F̂>, (4.2.13)

and right and left genodistributive compositions,

â> > (b̂>+̂>ĉ>) = d̂> ∈ F̂>, (4.2.14a)

(â>+̂>b̂>) > ĉ> = d̂> ∈ F̂> ∀â>, b̂>, ĉ>, d̂> ∈ F̂>; (4.2.14b)

5) The set F̂> verifies the right and left genodistributive law

â> > (b̂>+̂>ĉ>) = (â>+̂>b̂>) > ĉ> = d̂>, ∀â>, b̂>, ĉ>,∈ F̂>. (4.2.15)

In this way we have the forward genoreal numbers R̂>, the forward genocom-
plex numbers Ĉ> and the forward genoquaternionic numbers Q̂C> while the
forward genooctonions Ô> can indeed be formulated but they do not constitute
genofields [14].

The backward genofields and the isodual forward and backward genofields
are defined accordingly. Santilli’s genofields are called of the first (second)
kind when the genounit is (is not) an element of F.

The basic axiom-preserving character of genofields is illustrated by the fol-
lowing:

LEMMA 4.2.1 [13]: Genofields of first and second kind are fields (namely,
they verify all axioms of a field).

In Section 2.1 we pointed out that the conventional product “2 multiplied
by 3” is not necessarily equal to 6 because, depending on the assumed unit
and related product, it can be −6.

In Section 3.2 we pointed out that the same product “2 multiplied by 3” is
not necessarily equal to +6 or −6, because it can also be equal to an arbitrary
number, or a matrix or an integrodifferential operator.
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In this section we point out that “2 multiplied by 3” can be ordered to the
right or to the left, and the result is not only arbitrary, but yielding different
numerical results for different orderings, 2 > 3 �= 2 < 3, all this by continuing
to verify the axioms of a field per each order [13].

Once the forward and backward genofields have been identified, the vari-
ous branches of genomathematics can be constructed via simple compatibility
arguments.

For specific applications to irreversible processes there is first the need to
construct the genofunctional analysis, studied in Refs. [6,18] that we cannot
review here for brevity. the reader is however warned that any elaboration
of irreversible processes via Lie-admissible formulations based on conventional
or isotopic functional analysis leads to catastrophic inconsistencies because
it would be the same as elaborating quantum mechanical calculations with
genomathematics.

As an illustration, Theorems 1.5.1 and 1.5.2 of catastrophic inconsistencies
are activated unless one uses the ordinary differential calculus is lifted, for
ordinary motion in time of matter, into the following forward genodifferentials
and genoderivatives

d̂>x = T̂>
x × dx,

∂̂>

∂̂>x
= Î>

x × ∂

∂x
, etc. (4.2.16)

with corresponding backward and isodual expressions here ignored,
Similarly, all conventional functions and isofunctions, such as isosinus, iso-

cosinus, isolog, etc., have to be lifted in the genoform

f̂>(x>) = f(x̂>) × Î>, (4.2.17)

where one should note the necessity of the multiplication by the genounit as
a condition for the result to be in R̂>, Ĉ>, or Ô>.

4.2.3 Genogeometries and Their Isoduals
Particularly intriguing are the genogeometries [16] (see also monographs

[18,19] for detailed treatments) characterized by a simple genotopy of the
isogeometries of the preceding chapter.

As an illustration, the Minkowski-Santilli forward genospace M̂>(x̂>,
η̂>, R̂>) over the genoreal R̂> is characterized by the following spacetime,
genocoordinates, genometric and genoinvariant

x̂> = xÎ> = {xµ} × Î>, η̂> = T̂> × η, η = Diag.(1, 1, 1,−1), (4.2.18a)

x̂>2>
= x̂>µ×̂>η̂>

µν×̂>x̂>ν = (xµ × η̂>
µν × xν) × Î>, (4.2.18b)

where the first expression of the genoinvariant is on genospaces while the
second is its projection in our spacetime.
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Note that the minkowski-Santilli genospace has, in general, an explicit de-
pendence on spacetime coordinates. Consequently, it is equipped with the
entire formalism of the conventional Riemannian spaces covariant derivative,
Christoffel’s symbols, Bianchi identity, etc. only lifted from the isotopic form
of the preceding chapter into the genotopic form.

A most important feature is that genospaces permit, apparently for the first
time in scientific history, the representation of irreversibility directly via the
basic genometric. This is due to the fact that genometrics are nonsymmetric
by conception, e.g.,

η̂>
µν �= η̂>

νµ. (4.2.19)

Consequently, genotopies permit the lifting of conventional symmetric met-
rics into nonsymmetric forms,

ηMinkow.
Symm → η̂>Minkow.−Sant.

NonSymm (4.2.20)

Remarkably, nonsymmetric metrics bare indeed permitted by the axioms of
conventional spaces as illustrated by the invariance

(xµ × ηµν × xν) × I ≡ [xµ × (T̂> × ηµν) × xν ] × T>−1 ≡

≡ (xµ × η̂>
µν × xν) × Î>, (4.2.21)

where T̂> is assumed in this simple illustration to be a complex number.
Interested readers can then work out backward genogeometries and the iso-

dual forward and backward genogeometries with their underlying genofunc-
tional analysis.

This basic geometric feature was not discovered until recently because hid-
den where nobody looked for, in the basic unit. However, this basic geometric
advance in the representation of irreversibility required the prior discovery of
basically new numbers, Santilli’s genonumbers with nonsymmetric unit and
ordered multiplication [14].

4.2.4 Lie-Santilli Genotheory and its Isodual
Particularly important for irreversibility is the lifting of Lie’s and Lie-

Santilli’s theories permitted by genomathematics, first identified by Santilli
in Ref. [12] of 1978 (and then studied in various works, e.g., [7,18,19]) via the
following genotopies:

(1) The forward and backward universal enveloping genoassociative algebra
ξ̂>, <ξ̂, with infinite-dimensional basis characterizing the Poincaré-Birkhoff-
Witt-Santilli genotheorem

ξ̂> : Î>, X̂i, X̂i > X̂j , X̂i > X̂j > X̂k, . . . , i ≤ j ≤ k, (4.2.22a)

<ξ̂ : Î , <X̂i, X̂i < X̂j , X̂i < X̂j < X̂k, . . . , i ≤ j ≤ k; (4.2.22b)
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where the “hat” on the generators denotes their formulation on genospaces
over genofields and their Hermiticity implies that X̂> =< X̂ = X̂;

(2) The Lie-Santilli genoalgebras characterized by the universal, jointly Lie-
and Jordan-admissible brackets,

<L̂> : (X̂î,X̂j) = X̂i < X̂j − X̂j > X̂i = Ck
ij × X̂k, (4.2.23)

here formulated formulated in an invariant form (see below);
(3) The Lie-Santilli genotransformation groups

<Ĝ> : Â(ŵ) = (êî×̂X̂×̂ŵ)> > Â(0̂) << (ê−î×̂ŵ×̂X̂) =

= (ei×X̂×T̂ >×w) × A(0) × (e−i×w×<T̂×X̂), (4.2.24)

where ŵ> ∈ R̂> are the genoparameters; the genorepresentation theory, etc.

4.2.5 Genosymmetries and Nonconservation Laws
The implications of the Lie-Santilli genotheory are significant mathemati-

cally and physically. On mathematical grounds, the Lie-Santilli genoalgebras
are “directly universal” and include as particular cases all known algebras,
such as Lie, Jordan, Flexible algebras, power associative algebras, quantum,
algebras, supersymmetric algebras, Kac-Moody algebras, etc. (Section 1.5).

Moreover, when computed on the genobimodule

<B̂> =< ξ̂ × ξ̂>, (4.2.25)

Lie-admissible algebras verify all Lie axioms, while deviations from Lie alge-
bras emerge only in their projection on the conventional bimodule

<B> =< ξ × ξ>, (4.2.26)

of Lie’s theory (see Ref. [17] for the initiation of the genorepresentation theory
of Lie-admissible algebras on bimodules).

This is due to the fact that the computation of the left action A < B =
A ×< T̂ × B on <ξ̂ (that is, with respect to the genounit <Î = 1/<T̂ ) yields
the save value as the computation of the conventional product A × B on <ξ
(that is, with respect to the trivial unit I), and the same occurs for the value
of A > B on ξ̂>.

The above occurrences explain the reason the structure constant and the
product in the r.h.s. of Eq. (4.2.23) are those of a conventional Lie algebra.

In this way, thanks to genomathematics, Lie algebras acquire a towering sig-
nificance in view of the possibility of reducing all possible irreversible systems
to primitive Lie axioms.
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The physical implications of the Lie-Santilli genotheory are equally far
reaching. In fact, Noether’s theorem on the reduction of reversible conser-
vation laws to primitive Lie symmetries can be lifted to the reduction, this
time, of irreversible nonconservation laws to primitive Lie-Santilli genosym-
metries.

As a matter of fact, this reduction was the very first motivation for the con-
struction of the genotheory in memoir [12] (see also monographs [7,18,19,20]).
The reader can then foresee similar liftings of all remaining physical aspects
treated via Lie algebras.

The construction of the isodual Lie-Santilli genotheory is an instructive
exercise for readers interested in learning the new methods.

4.3 CLASSICAL LIE-ADMISSIBLE MECHANICS
4.3.1 Fundamental Ordering Assumption on

Irreversibility
The discovery [12] of two complementary orderings of the product and re-

lated units while preserving the abstract axioms of a field has truly fundamen-
tal implications for irreversibility, since it permits the axiomatically consistent
and invariant representation of irreversibility via the most ultimate and prim-
itive axioms, those on the product and related unit. We, therefore, have the
following:

FUNDAMENTAL ORDERING ASSUMPTION ON IRREVERSIBILITY
[15,19,20]: Dynamical equations for motion forward in time of matter (anti-
matter) are characterized by genoproducts to the right and related genounits
(their isoduals), while dynamical equations for the motion backward in time of
matter (antimatter) are characterized by genoproducts to the left and related
genounits (their isoduals) under the condition that said genoproducts and ge-
nounits are interconnected by time reversal expressible for generic quantities
A, B with the relation,

(A > B)† = (A > T̂> × B)† = B† × (T̂>)† × A†, (4.3.1)

namely,
T̂> = (<T̂ )† (4.3.2)

thus recovering the fundamental complementary conditions (4.1.17) or (4.2.2).
Unless otherwise specified, from now on physical and chemical expression

for irreversible processes will have no meaning without the selection of one of
the indicated two possible orderings.
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4.3.2 Geno-Newtonian Equations and Their Isoduals
Recall that, for the case of isotopies, the basic Newtonian systems are given

by those admitting nonconservative internal forces restricted by certain con-
straints to verify total conservation laws (these are the closed non-Hamiltonian
systems of Chapter 1).

For the case of the genotopies under consideration here, the basic Newto-
nian systems are the conventional nonconservative systems without subsidiary
constraints (open non-Hamiltonian systems) with generic expression (4.1.3),
in which case irreversibility is characterized by nonselfadjoint forces, since all
conservative forces are reversible.

As it is well known, the above equations are not derivable from any vari-
ational principle in the fixed frame of the observer [6], and this is the rea-
son why all conventional attempts for consistently quantizing nonconservative
forces have failed for about one century. In turn, the lack of achievement of a
consistent operator counterpart of nonconservative forces lead to the academic
belief that they are illusory (Section 1.2).

Hadronic mechanics has achieved the first and only physically consistent
operator formulation of nonconservative forces known to the author.3 This
goal was achieved by rewriting Newton’s equations (4.1.3) into an identical
form derivable from a variational principle. Still in turn, the latter objective
was solely permitted by the novel genomathematics.

It is appropriate to recall that Newton was forced to discover new mathemat-
ics, the differential calculus, prior to being able to formulated his celebrated
equations. Therefore, readers should not be surprised at the need for the
new genodifferential calculus as a condition to represent all nonconservative
Newton’s systems from a variational principle.

Recall also from Section 2.3 that, contrary to popular beliefs, there exist
four inequivalent directions of time, namely, motion forward in future times,
motion backward in past time, motion backward from future times and motion
forward in past times, each direction having its own unit.

Consequently, time reversal alone cannot represent all these possible mo-
tions, and isoduality results to be the only known additional conjugation that,
when combined with time reversal, can represent all possible time evolutions
of both matter and antimatter.

The above setting implies the existence of four different new mechanics first
formulated by Santilli in memoir [14] of 1996, and today known as Newton-
Santilli genomechanics, namely:

3The author would appreciate any indication of operator formulations of nonconservative forces under
the conditions verified by hadronic mechanics shown in the next section, namely, that nonconserved
quantities, such as the Hamiltonian, are Hermitean as a necessary condition to be observable.
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A) Forward genomechanics for the representation of forward motion of mat-
ter systems;

B) Backward genomechanics for the representation of the time reversal im-
age of matter systems;

C) Isodual backward genomechanics for the representation of motion back-
ward in time of antimatter systems, and

D) Isodual forward genomechanics for the representation of time reversal
antimatter systems.

These new mechanics are characterized by:
1) Four different times, forward and backward genotimes for matter systems

and the backward and forward isodual genotimes for antimatter systems

t̂> = t × Î>
t , −t̂>, t̂>d, −t̂>d, (4.3.3)

with (nowhere singular and non-Hermitean) forward and backward time ge-
nounits and their isoduals4,

Î>
t = 1/T̂>

t , −Î>
t , Î>d

t , −Î>d
t ; (4.3.4)

2) The forward and backward genocoordinates and their isoduals

x̂> = x × Î>
x , −x̂>, x̂>d, −x̂>d, (4.3.5)

with (nowhere singular non-Hermitean) coordinate genounit

Î>
x = 1/T̂>

x , −Î>
x , Î>d

x, −Î>d
x, (4.3.6)

with forward and backward coordinate genospace and their isoduals Ŝ>
x , etc.,

and related forward coordinate genofield and their isoduals R̂>
x , etc.;

3) The forward and backward genospeeds and their isoduals

v̂> = d̂>x̂>/d̂>t̂>, −v̂>, v̂>d, −v̂>d, (4.3.7)

with (nowhere singular and non-Hermitean) speed genounit

Î>
v = 1/T̂>

v , −Î>
v , Î>d

v, −Î>d
v, (4.3.8)

with related forward speed backward genospaces and their isoduals Ŝ>
v , etc.,

over forward and backward speed genofields R̂>
v , etc.;

The above formalism then leads to the forward genospace for matter systems

Ŝ>
tot = Ŝ>

t × Ŝ>
x × Ŝ>

v , (4.3.9)

4Note that, to verify the condition of non-Hermiticity, the time genounits can be complex valued.
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defined over the it forward genofield

R̂>
tot = R̂>

t × R̂>
x × R̂>

v , (4.3.10)

with total forward genounit

Î>
tot = Î>

t × Î>
x × Î>

v , (4.3.11)

and corresponding expressions for the remaining three spaces obtained via
time reversal and isoduality.

The basic equations are given by:
I) The forward Newton-Santilli genoequations for matter systems [14], for-

mulated via the genodifferential calculus,

m̂>
a >

d̂>v̂>
ka

d̂>t̂>
= − ∂̂>V̂ >

∂̂>x̂>k
a

; (4.3.12)

II) The backward genoequations for matter systems that are characterized
by time reversal of the preceding ones;

III) the backward isodual genoequations for antimatter systems that are
characterized by the isodual map of the backward genoequations,

<m̂d
a <

<d̂d<v̂d
ka

<d̂d<t̂d
= −

<∂̂d<V̂ d

<∂̂d<x̂dk
a

; (4.3.13)

IV) the forward isodual genoequations for antimatter systems characterized
by time reversal of the preceding isodual equations.

Newton-Santilli genoequations (4.3.12) are “directly universal” for the rep-
resentation of all possible (well behaved) Eqs. (4.1.3) in the frame of the
observer because they admit a multiple infinity of solution for any given non-
selfadjoint force.

A simple representation occurs under the conditions assumed for simplicity,

N = Î>
t = Î>

v = 1, (4.3.14)

for which Eqs. (4.3.12) can be explicitly written

m̂> >
d̂>v̂>

d̂>t
= m × dv̂>

dt
=

= m × d

dt

d(x × Î>
x )

dt
= m × dv

dt
× Î>

x + m × x × dÎ>

dt
= Î>

x × ∂V

∂x
, (4.3.15)

from which we opbtain the genorepresentation

FNSA = −m × x × 1
Î>
x

× dÎ>
x

dt
, (4.3.16)
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that always admit solutions here left to the interested reader since in the next
section we shall show a much simpler, universal, algebraic solution.

As one can see, in Newton’s equations the nonpotential forces are part
of the applied force, while in the Newton-Santilli genoequations nonpotential
forces are represented by the genounits, or, equivalently, by the genodifferential
calculus, in a way essentially similar to the case of isotopies.

The main difference between iso- and geno-equations is that isounits are
Hermitean, thus implying the equivalence of forward and backward motions,
while genounits are non-Hermitean, thus implying irreversibility.

Note also that the topology underlying Newton’s equations is the conven-
tional, Euclidean, local-differential topology which, as such, can only represent
point particles.

By contrast, the topology underlying the Newton-Santilli genoequations is
given by a genotopy of the isotopology studied in the preceding chapter, thus
permitting for the representation of extended, nonspherical and deformable
particles via forward genounits, e.g., of the type

Î> = Diag.(n2
1, n

2
2, n

2
3, n

2
4) × Γ>(t, r, v, . . . ), (4.3.17)

where n2
k, k = 1, 2, 3 represents the semiaxes of an ellipsoid, n2

4 represents the
density of the medium in which motion occurs (with more general nondiagonal
realizations here omitted for simplicity), and Γ> constitutes a nonsymmet-
ric matrix representing nonselfadjoint forces, namely, the contact interactions
among extended constituents occurring for the motion forward in time.

4.3.3 Lie-Admissible Classical Genomechanics and its
Isodual

In this section we show that, once rewritten in their identical genoform
(4.3.12), Newton’s equations for nonconservative systems are indeed deriv-
able from a variational principle, with analytic equations possessing a Lie-
admissible structure and Hamilton-Jacobi equations suitable for the first know
consistent and unique operator map studied in the next section.

The most effective setting to introduce real-valued non-symmetric genounits
is in the 6N -dimensional forward genospace (genocotangent bundle) with local
genocoordinates and their conjugates

â>µ = aρ × Î>µ
1 ρ , (â>µ) =

(
x̂>k

α

p̂>
kα

)
(4.3.18)

and
R̂>

µ = Rρ × Î>ρ
2 µ , (R̂>

µ ) = (p̂kα, 0̂), (4.3.19a)

Î>
1 = 1/T̂>

1 = (Î>
2 )T = (1/T̂>

2 )T , (4.3.19b)
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k = 1, 2, 3; α = 1, 2, . . . , N ; µ, ρ = 1, 2, . . . 6N,

where the superscript T stands for transposed, and nowhere singular, real-
valued and non-symmetric genometric and related invariant

δ̂> = T̂>
1 6N×6N δ6N×6N × δ6N×6N , (4.3.20a)

â>µ > R̂>
µ = â>ρ × T̂>β

1 ρ × R̂>
β = aρ × Î>β

2 ρ × Rβ. (4.3.20b)

In this case we have the following genoaction principle [14]

δ̂>Â> = δ̂>

∫̂ >

[R̂>
µ >a d̂>â>µ − Ĥ> >t d̂>t̂>] =

= δ

∫
[Rµ × T̂>µ

1 ν (t, x, p, . . . ) × d(aβ × Î>ν
1 β ) − H × dt] = 0, (4.3.21)

where the second expression is the projection on conventional spaces over
conventional fields and we have assumed for simplicity that the time genounit
is 1.

It is easy to prove that the above genoprinciple characterizes the following
forward Hamilton-Santilli genoequations, (originally proposed in Ref. [11] of
1978 with conventional mathematics and in Ref. [14] of 1996 with genomath-
ematics (see also Refs. [18,19,20])

ω̂>
µν >

d̂>âν >

d̂>t̂>
− ∂̂>Ĥ>(â>)

∂̂>âµ>
=

=
(

0 −1
1 0

)
×

(
dr/dt
dp/dt

)
−

(
1 K
0 1

)
×

(
∂H/∂r
∂H/∂p

)
= 0, (4.3.22a)

ω̂> =
( ∂̂>R>

ν

∂̂>âµ>
−

∂̂>R̂>
µ

∂̂>âν >

)
× Î> =

(
0 −1
1 0

)
× Î>, (4.3.22b)

K = FNSA/(∂H/∂p), (4.3.22c)

where one should note the “direct universality” of the simple algebraic solution
(4.3.22c).

The time evolution of a quantity Â>(â>) on the forward geno-phase-space
can be written in terms of the following brackets

d̂>Â>

d̂>t>
= (Â>, Ĥ>) =

∂̂>Â>

∂̂>â>µ
> ω̂µν> >

∂̂>Ĥ>

∂̂â>ν
=

=
∂Â>

∂â>µ
× S µν × ∂Ĥ>

∂â>ν
=
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=
( ∂Â>

∂r̂>k
α

× ∂Ĥ>

∂p̂>
ka

− ∂Â>

∂p̂>
ka

× ∂Ĥ>

∂r̂>k
a

)
+

∂Â>

∂p̂>
ka

× FNSA
ka , (4.3.23a)

S>µν = ωµρ × Î2µ
ρ , ωµν = (||ωαβ ||−1)µν , (4.3.23b)

where ωµν is the conventional Lie tensor and, consequently, Sµν is Lie-admissible
in the sense of Albert [7].

As one can see, the important consequence of genomathematics and its
genodifferential calculus is that of turning the triple system (A, H, FNSA) of
Eqs. (4.1.5) in the bilinear form (A,̂B), thus characterizing a consistent algebra
in the brackets of the time evolution.

This is the central purpose for which genomathematics was built (note that
the multiplicative factors represented by K are fixed for each given system).
The invariance of such a formulation will be proved shortly.

It is an instructive exercise for interested readers to prove that the brackets
(A,̂B) are Lie-admissible, although not Jordan-admissible.

It is easy to verify that the above identical reformulation of Hamilton’s his-
torical time evolution correctly recovers the time rate of variations of physical
quantities in general, and that of the energy in particular,

dA>

dt
= (A>, H>) = [Â>, Ĥ>] +

∂Â>

∂p̂>
kα

× FNSA
kα , (4.3.24a)

dH

dt
= [Ĥ>, Ĥ>] +

∂Ĥ>

∂p̂>
kα

× FNSA
ka = vk

α × FNSA
ka . (4.3.24b)

It is easy to show that genoaction principle (4.3.21) characterizes the fol-
lowing Hamilton-Jacobi-Santilli genoequations [14]

∂̂>A>

∂̂>t̂>
+ Ĥ> = 0, (4.3.25a)

( ∂̂>A>

∂̂>â>µ

)
=

( ∂̂>A>

∂̂>x>k
a

,
∂̂>A>

∂̂>p>
ka

)
= (R̂>

µ ) = (p̂>
ka, 0̂), (4.3.25b)

which confirm the property (crucial for genoquantization as shown below) that
the genoaction is indeed independent of the linear momentum.

Note the direct universality of the Lie-admissible equations for the represen-
tation of all infinitely possible Newton equations (4.1.3) (universality) directly
in the fixed frame of the experimenter (direct universality).

Note also that, at the abstract, realization-free level, Hamilton-Santilli ge-
noequations coincide with Hamilton’s equations without external terms, yet
represent those with external terms.
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The latter are reformulated via genomathematics as the only known way to
achieve invariance and derivability from a variational principle while admitting
a consistent algebra in the brackets of the time evolution [38].

Therefore, Hamilton-Santilli genoequations (3.6.66) are indeed irreversible
for all possible reversible Hamiltonians, as desired. The origin of irreversibility
rests in the contact nonpotential forces FNSA according to Lagrange’s and
Hamilton’s teaching that is merely reformulated in an invariant way.

The above Lie-admissible mechanics requires, for completeness, three addi-
tional formulations, the backward genomechanics for the description of matter
moving backward in time, and the isoduals of both the forward and backward
mechanics for the description of antimatter.

The construction of these additional mechanics is lefty to the interested
reader for brevity.

4.4 LIE-ADMISSIBLE OPERATOR MECHANICS
AND ITS ISODUAL

4.4.1 Basic Dynamical Equations
A simple genotopy of the naive or symplectic quantization applied to Eqs.

(4.3.24) yields the Lie-admissible branch of hadronic mechanics comprising
four different formulations, the forward and backward genomechanics for mat-
ter and their isoduals for antimatter. The forward genomechanics for matter
is characterized by the following main topics:

1) The nowhere singular (thus everywhere invertible) non-Hermitean for-
ward genounit for the representation of all effects causing irreversibility, such
as contact nonpotential interactions among extended particles, etc. (see the
subsequent chapters for various realizations)

Î> = 1/T̂> �= (Î>)†, (4.4.1)

with corresponding ordered product and genoreal R̂> and genocomplex Ĉ>

genofields;
2) The forward genotopic Hilbert space Ĥ> with forward genostates |ψ̂> >

and forward genoinner product

<< ψ̂| > |ψ̂> > ×Î> =<< ψ̂| × T̂> × |ψ̂> > ×Î> ∈ Ĉ>, (4.4.2)

and fundamental property

Î> > |ψ̂> >= |ψ̂> >, (4.4.3)

holding under the condition that Î> is indeed the correct unit for motion
forward in time, and forward genounitary transforms

Û> > (<Û)†> = (<Û)†> > Û> = Î>; (4.4.4)
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3) The fundamental Lie-admissible equations, first proposed in Ref. [12] of
1974 (p. 783, Eqs. (4.18.16)) as the foundations of hadronic mechanics, formu-
lated on conventional spaces over conventional fields, and first formulated in
Refs. [14,19] of 1996 on genospaces and genodifferential calculus on genofields,
today’s known as Heisenberg-Santilli genoequations, that can be written in the
finite form

Â(t̂) = Û> > Â(0) << Û = (êî×̂Ĥ×̂t̂
> ) > Â(0̂) < (<ê−î×̂t̂×̂Ĥ) =

= (ei×Ĥ×T̂ >×t) × A(0) × (e−i×t×<T̂×Ĥ), (4.4.5)

with corresponding infinitesimal version

î×̂ d̂Â

d̂t̂
= (Â,̂Ĥ) = Â < Ĥ − Ĥ > Â =

= Â ×< T̂ (t̂, r̂, p̂, ψ̂, . . . .) × Ĥ − Ĥ × T̂>(t̂, r̂, p̂, ψ̂, . . . ) × Â, (4.4.6)

where there is no time arrow, since Heisenberg’s equations are computed at a
fixed time.

4) The equivalent Schrödinger-Santilli genoequations, first suggested in the
original proposal [12] to build hadroniuc mechanics (see also Refs. [17,23,24]),
formulated via conventional mathematics and in Refs. [14,19] via genomathe-
matics, that can be written

î> >
∂̂>

∂̂>t̂>
|ψ̂> >= Ĥ> > |ψ̂> >=

= Ĥ(r̂, v̂) × T̂>(t̂, r̂, p̂, ψ̂, ∂̂ψ̂ . . . ) × |ψ̂> >= E> > |ψ> >, (4.4.7)

where the time orderings in the second term are ignored for simplicity of
notation;

5) The forward genomomentum that escaped identification for two decades
and was finally identified thanks to the genodifferential calculus in Ref. [14]
of 1996

p̂>
k > |ψ̂> >= −î> > ∂̂>

k |ψ̂> >= −i × Î>i
k × ∂i|ψ̂> >, (4.4.8)

6) The fundamental genocommutation rules also first identified in Ref. [14],

(r̂i ,̂ p̂j) = i × δi
j × Î>, (r̂i ,̂ r̂j) = (p̂i ,̂ p̂j) = 0, (4.4.9)

7) The genoexpectation values of an observable for the forward motion Â>

[14,19]
<< ψ̂| > Â> > |ψ̂> >

<< ψ̂| > |ψ̂> >
× Î> ∈ Ĉ>, (4.4.10)
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under which the genoexpectation values of the genounit recovers the conven-
tional Planck’s unit as in the isotopic case,

< ψ̂| > Î> > |ψ̂ >

< ψ̂| > |ψ̂ >
= I. (4.4.11)

The following comments are now in order. Note first in the genoaction prin-
ciple the crucial independence of isoaction Â> in form the linear momentum,
as expressed by the Hamilton-Jacobi-Santilli genoequations (4.3.25). Such
independence assures that genoquantization yields a genowavefunction solely
dependent on time and coordinates, ψ̂> = ψ̂>(t, r).

Other geno-Hamiltonian mechanics studied previously [7] do not verify such
a condition, thus implying genowavefunctions with an explicit dependence
also on linear momenta, ψ̂> = ψ̂>(t, r, p) that violate the abstract identity of
quantum and hadronic mechanics whose treatment in any case is beyond our
operator knowledge at this writing.

Note that forward geno-Hermiticity coincides with conventional Hermitic-
ity. As a result, all quantities that are observables for quantum mechanics
remain observables for the above genomechanics.

However, unlike quantum mechanics, physical quantities are generally non-
conserved, as it must be the case for the energy,

î> >
d̂>Ĥ>

d̂>t̂>
= Ĥ × (<T̂ − T̂>) × Ĥ �= 0. (4.4.12)

Therefore, the genotopic branch of hadronic mechanics is the only known
operator formulation permitting nonconserved quantities to be Hermitean as a
necessary condition to be observability.

Other formulation attempt to represent nonconservation, e.g., by adding
an “imaginary potential” to the Hamiltonian, as it is often done in nuclear
physics [25]. In this case the Hamiltonian is non-Hermitean and, consequently,
the nonconservation of the energy cannot be an observable.

Besides, said “nonconservative models” with non-Hermitean Hamiltonians
are nonunitary and are formulated on conventional spaces over conventional
fields, thus suffering all the catastrophic inconsistencies of Theorem 1.4.2. For
additional aspects of genomechanics interested readers may consult Ref. [61].

We should stress the representation of irreversibility and nonconservation
beginning with the most primitive quantity, the unit and related product.
Closed irreversible systems are characterized by the Lie-isotopic subcase in
which

î×̂ d̂Â

d̂t̂
= [Â,̂Ĥ] = Â × T̂ (t, . . . ) × Ĥ − Ĥ × T̂ (t, . . . ) × Â, (4.4.13a)

<T̂ (t, . . . ) = T̂>(t, . . . ) = T̂ (t, . . . ) = T̂ †(t, . . . ) �= T̂ (−t, . . . ), (4.4.13b)
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for which the Hamiltonian is manifestly conserved. Nevertheless the system
is manifestly irreversible. Note also the first and only known observability of
the Hamiltonian (due to its iso-Hermiticity) under irreversibility.

As one can see, brackets (A, B) of Eqs. (4.4.6) are jointly Lie- and Jordan-
admissible.

Note also that finite genotransforms (4.4.5) verify the condition of genoher-
miticity, Eq. (4.4.4).

We should finally mention that, as it was the case for isotheories, genothe-
ories are also admitted by the abstract axioms of quantum mechanics, thus
providing a broader realization. This can be seen, e.g., from the invariance
under a complex number C

< ψ|x|ψ > ×I =< ψ|xC−1 × |ψ > ×(C × I) =< ψ| > |ψ > ×I>. (4.4.14)

Consequently, genomechanics provide another explicit and concrete real-
ization of “hidden variables” [26], thus constituting another “completion” of
quantum mechanics in the E-P-R sense [27]. For the studies of these aspects
we refer the interested reader to Ref. [28].

The above formulation must be completed with three additional Lie-admis-
sible formulations, the backward formulation for matter under time reversal
and the two additional isodual formulations for antimatter. Their study is left
to the interested reader for brevity.

4.4.2 Simple Construction of Lie-Admissible Theories
As it was the case for the isotopies, a simple method has been identified in

Ref. [44] for the construction of Lie-admissible (geno-) theories from any given
conventional, classical or quantum formulation. It consists in identifying the
genounits as the product of two different nonunitary transforms,

Î> = (<Î)† = U × W †, <Î = W × U †, (4.4.15a)

U × U † �= 1, W × W † �= 1, U × W † = Î>, (4.4.15b)

and subjecting the totality of quantities and their operations of conventional
models to said dual transforms,

I → Î> = U × I × W †, I →< Î = W × I × U †, (4.4.16a)

a → â> = U × a × W † = a × Î>, (4.4.16b)

a →< â = W × a × U † =< Î × a, (4.4.16c)

a × b → â> > b̂> = U × (a × b) × W> =

= (U × a × W †) × (U × W †)−1 × (U × b × W †), (4.4.16d)
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∂/∂x → ∂̂>/∂̂>x̂> = U × (∂/∂x) × W † = Î> × (∂/∂x), (4.4.16e)

< ψ| × |ψ >→<< ψ| > |ψ> >= U × (< ψ| × |ψ >) × W †, (4.4.16f)

H × |ψ >→ Ĥ> > |ψ> >=

= (U × H × W †) × (U × W †)−1 × (U × ψ > W †), etc. (4.4.16g)

As a result, any given conventional, classical or quantum model can be
easily lifted into the genotopic form.

Note that the above construction implies that all conventional physical
quantities acquire a well defined direction of time. For instance, the correct
genotopic formulation of energy, linear momentum, etc., is given by

Ĥ> = U × H × W †, p̂> = U × p × W>, etc. (4.4.17)

In fact, under irreversibility, the value of a nonconserved energy at a given
time t for motion forward in time is generally different than the corresponding
value of the energy for −t for motion backward in past times.

This explains the reason for having represented in this section energy, mo-
mentum and other quantities with their arrow of time >. Such an arrow can
indeed be omitted for notational simplicity, but only after the understanding
of its existence.

Note finally that a conventional, one dimensional, unitary Lie transforma-
tion group with Hermitean generator X and parameter w can be transformed
into a covering Lie-admissible group via the following nonunitary transform

Q(w) × Q†(w) = Q†(w) × Q(w) = I, w ∈ R, (4.4.18a)

U × U † �= I, W × W † �= 1, (4.4.18b)

A(w) = Q(w) × A(0) × Q†(w) = eX×w×i × A(0) × e−i×w×X →
→ U × (eX×w×i × A(0) × e−i×w×X) × U † =

≡ [U × (eX×w×i) × W † × (U × W †)−1 × A × A(0)×
×U † × (W × U †)−1 × [W × (e−i×w×X) × U †] =

= (ei×X×X)> > A(0) << (e−1×w×X) = Û> > A(0) << Û , (4.4.18c)

which confirm the property of Section 4.2, namely, that under the necessary
mathematics the Lie-admissible theory is indeed admitted by the abstract Lie
axioms, and it is a realization of the latter broader than the isotopic form.
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4.4.3 Invariance of Lie-Admissible Theories
Recall that a fundamental axiomatic feature of quantum mechanics is the

invariance under time evolution of all numerical predictions and physical laws,
which invariance is due to the unitary structure of the theory.

However, quantum mechanics is reversible and can only represent in a sci-
entific way beyond academic beliefs reversible systems verifying total conser-
vation laws due to the antisymmetric character of the brackets of the time
evolution.

As indicated earlier, the representation of irreversibility and nonconserva-
tion requires theories with a nonunitary structure. However, the latter are
afflicted by the catastrophic inconsistencies of Theorem 1.5.2.

The only resolution of such a basic impasse known to the author has been
the achievement of invariance under nonunitarity and irreversibility via the
use of genomathematics, provided that such genomathematics is applied to
the totality of the formalism to avoid evident inconsistencies caused by mixing
different mathematics for the selected physical problem.5

Such an invariance was first achieved by Santilli in Ref. [44] of 1997 and
can be illustrated by reformulating any given nonunitary transform in the
genounitary form

U = Û × T̂>1/2, W = Ŵ × T̂>1/2, (4.4.19a)

U × W † = Û > Ŵ † = Ŵ † > Û = Î> = 1/T̂>, (4.4.19b)

and then showing that genounits, genoproducts, genoexponentiation, etc., are
indeed invariant under the above genounitary transform in exactly the same
way as conventional units, products, exponentiations, etc. are invariant under
unitary transforms,

Î> → Î>′
= Û > Î> > Ŵ † = Î>, (4.4.20a)

Â > B̂ → Û > (A > B) > Ŵ † =

= (Û × T̂> × A × T> × Ŵ †) × (T̂> × W †)−1 × T̂>×
×(Û × T̂>)−1 × (Û × T> × Â × T> × Ŵ>) =

= Â′ × (Û × Ŵ †)−1 × B̂ = Â′ × T̂> × B′ = Â′ > B̂′, etc. (4.4.20b)

5Due to decades of protracted use it is easy to predict that physicists and mathematicians may be
tempted to treat the Lie-admissible branch of hadronic mechanics with conventional mathematics,
whether in part or in full. Such a posture would be fully equivalent, for instance, to the elaboration of
the spectral emission of the hydrogen atom with the genodifferential calculus, resulting in an evident
nonscientific setting.
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from which all remaining invariances follow, thus resolving the catastrophic
inconsistencies of Theorem 1.5.2.

Note the numerical invariances of the genounit Î> → Î>′ ≡ Î>, of the
genotopic element T̂> → T̂>′ ≡ T̂>, and of the genoproduct >→>′≡> that
are necessary to have invariant numerical predictions.

4.5 LORENTZIAN AND GALILEAN
GENORELATIVITIES AND THEIR ISODUALS

TO BE COMPLETED
Another important implication of genomathematics is the construction of

yet another lifting of special relativity, this time intended for the invariant
characterization of irreversible classical, quantum and gravitational processes,
today known as Santilli’s genorelativity.

Studies in the new relativity were initiated with memoir [23] of 19786 and
continued in monographs [49,50]. The studies were then continued via the
genotopies of: the background Euclidean topology [14]; the Minkowski space
[15]; the Poincaré symmetry [29]; the physical laws; etc. The geno-Galilean
case is treated in monographs [52,53] which appeared prior to the advent of
the genodifferential calculus [14]. The relativistic case is outlined in Ref. [29].

Regrettably, we cannot review genorelativity in details to avoid a prohibitive
length. For the limited scope of this presentation it is sufficient to indicate that
genorelativity can be also constructed from the isorelativity of the preceding
section via the lifting of the isounits into time dependent and/or nonsymmetric
forms, with consequential selection of an ordering of the product to identify
the selection direction of time.

Alternatively, all aspects of genorelativity can be explicitly constructed by
subjecting the corresponding aspects of conventional special relativity to the
dual noncanonical or nonunitary transform, as of Section 3.6.

The result is a fully invariant description of irreversible and nonconservative
processes in classical mechanics, particle physics and gravitation. Note that
the latter is achieved thanks to the first known admission of a nonsymmetric
metric in the genotopic realization of the Minkowskian axioms, as necessary
for a credible representation of irreversible gravitational events, such as the
explosion of a star.

Note finally that, as it was the case for isorelativity, all distinctions between
special and general relativity are lost also for genorelativity because the two

6This memoir contains the first generalization of Noether’s Theorem on Lie symmetries and con-
servation laws to Lie-admissible symmetries and nonconservation laws. The indication by inter-
ested colleagues of any prior representation of nonconservation laws via any symmetry would be
appreciated.
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relativities are again unified into one single relativity verifying the same basic
axioms, and merely differentiated via different realizations of the basic unit.

As it is well known, throughout the 20-th century thermodynamics has been
basically disjoint from Hamiltonian mechanics precisely because the former is
strictly irreversible, e.g., for the increase of the entropy in realistic systems,
while the latter is strictly reversible.

It appears that the Lie-admissible classical and operator genomechanics
presented in this section change the above setting and offer, apparently for the
first time, realistic possibility for an interconnection between thermodynamics
and mechanics, according to studies left to the interested reader.
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