Learn to size a basic solar system.

The following is a sizing sheet that can be used to approximate the size of a solar system. Atlantic Solar uses computer programs to determine the final size of the solar system needed to meet a specific load requirement. For an estimate of a solar system size this process will work just fine.

It is suggested that you print this page and fill in the blanks step by step.

Please note all mathematical operations are listed as follows: (X) is multiplication, (/) is division and (=) is the result.

Step #1

Daily DC Load Calculation					
Name of	Oty(X)	Current(X)	Hours/Dav(X)	Davs/Week(=)	Average
Load			110015/Duy(11)		AH/Week
•			•		•
•			•		•
•			•		•
•	•	•			•
Total AH/Week (=)					

Total AH/Week(/)	7 Days/Week(=)	Average AH/Day, DC Loads
	7 Days/Week	

Step #2

Appliance power ratings can be found on the back of almost every appliance. The rating is found on a label that states the power consumption of the unit in wattage. Motors need additional power to start, this is referred to as the surge of the appliance. The surge rating is located on the same label as the power rating.

	Daily AC Load Calculation					
Name of Load	Qty.(X)	Power(X)	Hours/Day(x)	Days/Week(=)	WH/Week	Surge
	·					· ·
	•					•
		•				•
	Total WH/Week					
	Max.					
Coi	ntinuous		(Add each load only once)			
	Load					
	Max. Surge (Add worst surge to continuous loads).					

Total WH/Week(/)	7 Days/Week(=)	Average WH/Day, AC Loads
	7 Days/Week	

Make Inverter Choice

Inverter Specifications.

=

Inverter Choice

Continuous Load	Watts (MUST be greater than
Capacity	⁻ Max. Continuous Load)
Surge Capacity	$= \frac{\text{Watts (MUST be greater than})}{\text{Max. Surge}}$
Input DC Voltage	= Volts(Should match DC Load Voltage)

Account for Inverter Efficiency				
Average WH/Day, .88 Average Inverter Adjust				
AC Loads(/) Efficiency(=)		WH/Day		
	.88	•		

Convert AC Load WH/Day to AH/Day				
Adjusted DC WH/Day(/) Inverter Input Voltage(=) Total AH/Day				
•	•	•		

Step #3

Total Average AH for AC and DC Loads				
(only if both are the same nominal voltage)				
Total AH/Day, DC	Total AH/Day			
Loads(+)	Total All/Day			

Step #4

Find your site's location on the insolation maps.			
City, State, Country of Site Worst Case Hours of Insolation			
•	•		

Step #5

Size the PV Array			
AH/Day(/)	Loss/Recharge Factor(/)	Site Insolation(=)	Min. Size of PV Needed in Amps
•	.75		

Determine the Number of Parallel Modules Solar Module Specifications.				
Needed PV Amps(/)	Round Up to Whole Number, Total Parallel Modules Needed			
	•			

_____Solar module model number that was used in above calculation.

Determine the Number of Series Modules				
Nominal System Voltage(/)	Nominal Module Voltage, Typically 12V(=)	Total Series Modules Needed		

Determine the Total Number of Solar Modules			
Total Series Modules(X)	Total Parallel Modules(=)	Total Modules	
•			

Step #6

Size the Battery Bank							
AI	Total I/Day(X)	Days Autonomy(/)	Max. DOD(/)	Co Fa	Temp. prrection actor(=)	Battery S Needec in AH	ize I
•		5	.8	•		•	
	Temperature Correction Factors Lowest 24 Hour Temperature Temperature Range in Degrees C Correction Factor					ľ	
		10 to 1			· · ·	.9	
	0 to -9		.83				
		-10 to -19				75	
		-20 to -30				65	

When determining the number of parallel batteries needed for your system, use the largest single battery possible. This is to keep the total number of parallel cells to a minimum. The more batteries in parallel the greater system losses.

Determine the Number of Parallel Batteries			
Battery Specifications.			
Needed Dettery AU()		Round Up to Whole	
	Battery AH @ 100HR	Number,	
needed Dattery An(/)	Rate(=)	Total Parallel Batteries	
		Needed	
		•	

Determine the Number of Series Batteries					
Nominal System Nominal Battery		Total Series			
Voltage(/)	Voltage(=)	Batteries Needed			
	•	•			

Determine the Total Number of Batteries				
Total Series Batteries(X)	Total Parallel Batteries(=)	Total Batteries		