ATOMUN DİĞER UCU : ELEKTRONLAR

Elektronlar tıpkı dünyanın güneş çevresinde dönerken, aynı zamanda kendi çevresinde dönmesi gibi, atom çekirdeğinin çevresinde dönen parçacıklardır. Aynı, gezegenlerde olduğu gibi bu dönüş, bizim yörünge adını verdiğimiz yollarda, çok büyük bir düzen içinde ve hiç durmaksızın gerçekleşir. Fakat dünyayla güneşin büyüklükleri arasındaki oran ile atomun içindeki oran çok farklıdır. Eğer elektronların büyüklüğü ile dünyanın büyüklüğü arasında bir kıyas yapmak gerekirse, bir atomu dünya kadar büyütsek, elektron sadece bir elma boyutuna gelecektir.
 

En güçlü mikroskopların bile göremeyeceği kadar küçük bir alanda dönüp-duran onlarca elektron, atomun içinde çok karışık bir trafik yaratır. Burada dikkat çeken en önemli nokta, çekirdeği elektrik yükünden oluşan bir zırh gibi kuşatan bu elektronların atomun içinde en ufak bir kazaya yol açmamalarıdır. Üstelik atomun içinde yaşanacak en ufak bir kaza atom için felaket olabilir. Ama böyle bir kaza asla gerçekleşmez; tüm işleyiş mükemmel bir düzen ve kusursuz bir sistem içinde devam eder. Çekirdeğin çevresinde saniyede 1.000 km. gibi akıl almaz bir hızla hiç durmadan dönen elektronlar, birbirleriyle bir kez bile çarpışmazlar. Birbirlerinden herhangi bir farkları bulunmayan bu elektronların farklı farklı yörüngelerde bulunmaları, son derece şaşırtıcıdır ve "bilinçli bir tasarım"ın ürünü olduğu apaçıktır. Kütleleri ve hızları birbirlerinden farklı olsaydı çekirdeğin etrafında farklı yörüngelere dizilmeleri doğal karşılanabilirdi. Nitekim Güneş Sistemimiz'deki gezegenlerin dizilişi bu mantıktadır. 
Yukarıdaki resimde elektronların dalga hareketine göre çizdikleri dört farklı yörünge tipi gösterilmektedir. Elektronlar parçacık özelliğine göre de gezegenlerin Güneş'in çevresinde dönmeleri gibi yörüngeler çizirler. Fakat elektronların sahip oldukları bu farklı hareketler, onların tam olarak tanımlanmasını engellemektedir.

Yani birbirinden kütle ve hız olarak tamamen farklı olan gezegenler, doğal olarak Güneş'in etrafında farklı yörüngelere yerleşmişlerdir. Ama atomdaki elektronların durumu bu gezegenlerden tamamen farklıdır. Tıpatıp birbirlerinin benzeri olan elektronların niçin çekirdek etrafında farklı yörüngelere sahip oldukları, bu yörüngeleri nasıl şaşmadan takip ettikleri, akıl almaz küçüklükteki boyutlarda akıl almaz büyüklükteki süratleriyle nasıl çarpışmadıkları soruları bizleri tek bir noktaya götürür. Bu eşsiz düzen ve hassas dengede karşımıza çıkan tek gerçek evrene ait bilincin kusursuz düzenlemesidir:

Elektronlar, nötron ve protonların neredeyse ikibinde biri kadar ufak parçacıklardır. Bir atomda, protonlarla eşit sayıda elektron bulunur ve her elektron her bir protonun taşıdığı artı (+) yüke eşit değerde eksi (-) yük taşır. Çekirdekteki toplam artı (+) yük ile elektronların toplam eksi (-) yükü birbirini dengeler ve atom nötr olur.

Elektronların, taşıdıkları elektrik yükü itibariyle bazı fizik kurallarına uymaları gerekir. Bu fizik kuralları "aynı elektrik yüklerinin birbirini itmesi ve zıt yüklerin birbirlerini çekmesi"dir. 

İlk olarak, normal koşullarda hepsi eksi yüklü olan elektronların bu kurala uyup birbirlerini itmeleri ve çekirdeğin etrafından dağılıp-gitmeleri gerekir. Ancak durum böyle olmaz. Eğer, elektronlar çekirdeğin etrafından dağılsaydı, tüm evren boşlukta dolaşan, proton, nötron ve elektronlardan ibaret olurdu. İkinci olarak; artı yüke sahip olduğu için çekirdeğin, eksi yüklü elektronları kendine çekmesi ve elektronların da çekirdeğe yapışmaları gerekirdi. Böyle bir durumda da çekirdek bütün elektronları çeker ve atom kendi içine çökerdi. 

Ancak bu olumsuzlukların hiçbiri olmaz. Elektronların az önce belirttiğimiz (1.000 km/s) olağanüstü kaçış hızları, bunların birbirlerine uyguladıkları itici kuvvet ve çekirdeğin elektronlara uyguladığı çekim kuvveti o kadar hassas değerler üzerine kurulmuştur ki, bu üç zıt etken birbirini mükemmel bir şekilde dengeler. Sonuçta atomdaki bu muazzam sistem dağılıp parçalanmadan sürüp gider. Atoma etki eden bu kuvvetlerden tek bir tanesinin, olması gerekenden biraz daha fazla veya biraz daha az olması atomun hiçbir zaman var olmamasına neden olurdu. 

Bu etkenlerin yanı sıra, çekirdekteki protonları ve nötronları birbirine bağlayan nükleer kuvvetler olmasaydı, eşit yüke sahip olan protonlar değil kenetlenmek, birbirlerine yaklaşamayacaklardı bile. Aynı şekilde nötronlar da çekirdeğe hiçbir şekilde bağlanamayacaklardı. Bunun sonucunda çekirdek, dolayısıyla atom diye bir şey olmayacaktı.

Bütün bu ince hesaplar, tek bir atomun bile başıboş olmayıp, bizim henüz anlamakta güçlük çektiğimiz evrensel bir zekanın kusursuz denetiminde hareket ettiğinin bir göstergesidir. Aksi takdirde içinde yaşadığımız evrenin daha başlamadan sonunun gelmesi kaçınılmaz olurdu. Daha başlangıç anında bu süreç tersine döner, evren oluşamazdı. Ancak her şeyin Yansıtıcısı, sonsuz güç ve ilim sahibi olan evrenin bilinci, evrendeki tüm dengeler gibi, atomun içinde de çok hassas dengeler kurmuştur ve bu sayede atom, mükemmel bir düzen ile varlığını sürdürmektedir.

Madde ve enerjiye ait bu doğal zeka gücünün yarattığı bu denge, bilim adamları tarafından yıllar boyunca araştırılarak çözülmeye çalışılmış ve sonunda gözlenen olaylara sadece çeşitli isimler takılmıştır: "elektromanyetik kuvvet", "güçlü nükleer kuvvet", "zayıf nükleer kuvvet", "kütlesel çekim kuvveti"… Ancak, kimse "Neden?" sorusu üzerinde düşünmemiştir. Örneğin, neden bu kuvvetler belirli şiddetlere, belirli kurallara göre hareket ederler? Neden bu kuvvetlerin etkili oldukları alanlar, takip ettikleri kurallar ve bu kuvvetlerin şiddetleri büyük bir uyum içindedir? 

Bütün bu sorular karşısında bilim adamları çaresiz kalmışlardır. Çünkü yapabildikleri sadece olayların hangi sırayla geliştiğini tahmin etmektir. Fakat yaptıkları araştırmaların sonucunda tartışmasız bir gerçek ortaya çıkmıştır. Evrenin her yerinde tek bir atomu dahi başıboş bırakmayan bir akıl ve irade sahibinin müdahalesi görülür. Bu şekilde bütün kuvvetleri bir uyum içinde bir arada tutan tek bir güç vardır, o da gücün ve kudretin tümünü kendisinde barındıran evrensel bir zekadır.

Bugüne kadar hiçbir bilim adamı atomdaki, dolayısıyla evrendeki kuvvetlerin sebebini, kaynağını ve niçin belli durumlarda belli kuvvetlerin ortaya çıktığını izah edememiştir. Bilimin yaptığı sadece gerçekleri gözlemlemek ve bunları ölçüp birer "isim" takmaktır. 
 

 

ELEKTRONLAR İNSANLARIN HİZMETİNDE


Elektrik, hayatımızın en önemli parçalarından biridir. Onsuz hiçbir şey yapamıyoruz. Yemek yerken, televizyon seyrederken, yolda giderken, temizlik yaparken tüm hayatımız elektrikle iç içe...
Bir düğmeye basıyoruz çevremiz aydınlanıyor, bir düğmeye basıyoruz tüm elektrikle aletler çalışmaya başlıyor. İşte elektriğin hayatımızın her anında kullandığımız bu haline elektrik akımı deniyor. Burada söz konusu olan akımı sağlayanlar ise  elektronlar. Elektrik (-) negatif yük sahibi elektronların ve iyonların hareketi sonucu oluşan yük akımıdır. Günlük hayatta kullandığımız televizyon, buzdolabı gibi aletler 1-2 amper elektrik çeker. Peki bu ölçü neyi ifade etmektedir?
Saniyede 1 Amper'lik akım demek, bir kesitten saniyede 6 milyon kere milyar elektron geçişi demektir. Yıldırımda ise bu sayı 1 milyon kat daha fazladır.

 

Bu tür "isim takmalar" bilim dünyasında büyük buluşlar olarak değerlendirilir. Halbuki, bilim adamları evrende yeni bir denge oluşturmaya, yeni bir sistem kurmaya değil, sadece evrende var olan mevcut dengeyi kavramaya-çözmeye çalışmaktadırlar. Yapılan şey de çoğunlukla, evrene ait bilinmeyen bu zekanın evrendeki sayısız yaratılış harikasından birini bir ucundan gözlemleyip buna bir isim vermekten ibarettir. Evrenin temel bilincinden doğan bu üstün  sistemi veya yapıyı tespit eden bir bilim adamı çeşitli bilimsel ödüllere layık görülür, yüceltilir, insanlar ona hayranlık duyarlar. Bu durumda asıl yüceltilmesi gereken hiç şüphesiz o yapıyı kendi içinde, akıl almaz derece hassas dengeler ve karmaşık hesaplarla donatan ve bunun gibi daha sayısız, olağanüstü harikaları yaratan, evrenin bilincidir.

HIZLANDIRILAN PARÇACIKLAR 

Hızlandırıcılar ve Çarpıştırıcılar

Maddenin temel yapı taşı olan parçacıkları araştırmak, atomdan milyonlarca defa daha küçük parçacıkları incelemekle mümkündür. Bu çok küçük parçacıkları incelemek ise ancak çok küçük ve karmaşık parçacık fiziği deney düzenekleriyle gerçekleşitirilebilir. Çok karmaşık deneyler ise, çok yönlü bilgisayar kullanımı ile kontrol edilebilir.

Yüksek enerji parçacık fiziği maddenin temelinde bulunan yapı taşlarını ve bunların birbirleri arasındaki etkileşimlerini inceleyen bilim dalıdır. Son yıllarda ileri teknoloji olanakları kullanan deneysel çalışmalar sayesinde maddenin yapısı hakkındaki bilgilerimiz hızla gelişmektedir. Parçacık fiziğinin araştırmaları kilometrelerce uzunluktaki parçacık hızlandırıcı laboratuarlarında yapılır. Parçacık hızlandırıcılarından yüklü parçacıklardan, çoğunlukla proton ve elektronlar, elektromanyetik alan içinde hızlandırılır ve yönlendirilir. Hızlandırılan parçacıklar ya sabit hedefler ile ya da birbirleri ile çarpıştırılır. Bu çarpışmalar sonucunda ortaya çıkan parçacıkların incelenmesi çeşitli detektör sistemleri ile gerçekleştirilir.

1950’li yıllardan başlayarak hızla gelişen hızlandırıcı ve detektör teknolojileri sayesinde çok yüksek enerjili çarpışmalar gerçekleştirmiş ve bu çarpışmaların gelişmiş detektör sistemlerinde incelenmesi ile maddenin temeli diyebildiğimiz proton ve nötronların kuark ismini verdiğimiz parçacıklardan oluşan bir alt yapısı olduğu anlaşılmıştır. Ulaşılan yüksek enerjilerde yapılan ölçümler protonun yarıçapının yüzde biri kadar olan uzaklıklarda maddenin yapısını araştırma olanağı sağlamıştır. Hızlandırıcı laboratuarları, kurulmaları ve çalıştırılmalarının çok masraflı oluşları nedeniyle dünyada sayılı birkaç merkezde de bulunmaktadır. En önemlileri Cern (Cenevre), DESY (Hamburg), Fermilab-FNAL (Chicago) ve SLC (California) olarak sayılabilir. Yüksek enerji fizikçileri bu merkezlerde büyük gruplar halinde deneysel çalışmalara katılmakta ve atomun sırlarını araştırmaktadırlar. Bu laboratuarlardan SLC’nin uzunluğu 3 km. CERN’in uzunluğu ise 27 km.dir. Ama devlik yarışında birincilik, ABD’nin Texas eyaletinin merkezinde kurulmakta ve çember çapı 85 kilometreyi bulacak olan Amerikan projesi SSC’ya aittir... Söz konusu makinelerin maliyet de (SSC için bu rakam toplam 6 milyar dolardır) boyutlarıyla birlikte doğal olarak artmaktadır.


CERN parçacık fiziği laboratuarı yer 100 metre altında ve 27 kilometre uzunluğunda inşa edilmiştir. Parçacıklar bu uzun tünelde önce hızlanıp, daha sonra birbirleriyle çarpıştırılırlar.

CERN parçacık fiziği laboratuarı İsviçre-Fransa sınırında kurulmuş, 19 Avrupa ülkesinin üyeliği ile oluşan uluslar arası nitelikte bir araştırma merkezidir. Türkiye’ni de gözlemci statüsünde bulunduğu bu laboratuarın temel araştırma konusu maddenin temel yapısı ve bu yapıyı oluşturan temel parçacıklardır. 3000’e yakın fizikçi, mühendis, teknisyen ve idari personelin çalıştığı laboratuarda 6000’in üstünde üye fizikçi laboratuara gelerek çalışmalar yapabilmektedir.
 

Elektronların Yörüngesi

En güçlü mikroskopların bile göremeyeceği kadar küçük bir alanda dönüp duran onlarca elektron, daha önce de belirtildiği gibi atomun içinde son derece karışık bir trafik yaratırlar. Ancak bu trafik, en sistemli şehir trafiğiyle bile kıyas edilemeyecek kadar düzenlidir ve elektronlar hiçbir şekilde birbirleriyle çarpışmazlar. Çünkü elektronların her birinin ayrı bir yörüngesi vardır ve bu yörüngeler hiçbir zaman birbiriyle çakışmaz.
 

Atom çekirdeğinin çevresinde 7 tane yörünge vardır. Asla değişmeyen bu 7 yörüngedeki elektron sayısı da bir matematiksel formülle belirlenmiştir: 2n2. Atomların tüm yörüngelerinde bulunabilecek en fazla elektron sayısı işte bu formülle sabitlenmiştir (formüldeki "n" harfi, yörünge numarasını belirtir).

Evreni oluşturan sınırsız sayıdaki atomun elektron yörüngelerinin asla şaşmadan 2n2 formülüne uyarak belirli bir sayıda kalmaları bir düzenin göstergesidir. Elektronlar inanılmaz hızlarda hareket etmelerine rağmen, atomun içinde herhangi bir kargaşanın çıkmaması da yine bu eşsiz düzenin bir devamıdır. Bu, tesadüflerin asla açıklayamayacağı bir düzendir.

 
Elektronlar atomun içinde son derece karmaşık bir yörünge izlerler. Bu küçük alanda şehir trafiğinden çok daha kalabalık bir ortam oluşmasına rağmen, en ufak bir düzensizlik yaşanmaz.

Doğa  kendi içinde her şeyi kusursuz bir ölçü, hesap ve düzen içinde yaratandır. Bu ölçü ve hesap, atomun en küçük parçacığından uzaydaki devasa gök cisimlerine, güneş sistemlerine, galaksilere kadar, bunların arasındakiler de dahil, bütün varlıklar alemini içine alır. Bu da evrene ait bizim henüz keşfedemediğimiz bir temel bilincin sonsuz gücünün, ilminin, sanatının ve hikmetinin bir sonucudur. Bu evrensel zeka gücü, yarattığı varlıklardaki ve sistemlerdeki mükemmel ölçü, düzen, denge ve hesaplarla bu sıfatlarını insanlara tanıtır. Sonsuz kudretini gözler önüne serer. İşte bütün bilimsel araştırmaların, hesaplamaların insanı ulaştırması gereken asıl gerçek budur.

ATOMUN İÇİNDEKİ BOŞLUK


Daha önce de üzerinde durduğumuz gibi, bir atomun çok büyük bir bölümü boşluktan oluşmaktadır. Burada her insanın aklına aynı soru gelir: Böyle büyük bir boşluk neden vardır? Şimdi şöyle düşünelim: Atom, en basit anlatımla içinde bir çekirdek ve onun çevresinde dönen elektronlardan oluşmaktadır. Çekirdekle elektronlar arasında başka hiçbir şey yoktur. Bu, "hiçbir şey olmayan" mikroskobik büyüklük, aslında atom ölçeğine göre çok geniştir. Bu genişliği şöyle örneklendirebiliriz: Çapı 1 cm. olan küçük bir bilya, çekirdeğe en yakın elektronu temsil ederse, çekirdek bu bilyadan 1 km. ötede bulunacaktır.

Bu büyüklüğün kafamızda daha iyi canlanabilmesi için şöyle bir örnek verebiliriz:

"Temel parçacıklar arasında çok büyük bir boşluk egemendir. Eğer bir oksijen çekirdeğinin protonunu şu önümdeki masanın üstünde duran bir toplu iğnenin başı gibi düşünürsem, o zaman çevresinde dönen elektron Hollanda, Almanya ve İspanya'dan geçen bir çember çizer. (Bu satırların yazarı Fransa'da yaşamaktadır.) Onun için, bedenimi oluşturan tüm atomlar birbirlerine değecek kadar bir araya gelseydi, artık beni göremezdiniz. Zaten, artık beni çıplak gözle hiçbir zaman gözlemleyemezdiniz: Neredeyse milimetrenin birkaç binde biri boyutunda ufacık bir toz kadar olurdum."

İşte bu noktada evrende bilinen en büyük mekanla, en küçük mekan arasında bir benzerlik ortaya çıktığını fark ederiz. Öyle ki, gözlerimizi yıldızlara çevirirsek, orada da atomdakine benzer bir boşlukla karşılaşırız. Yıldızlar arasında da, galaksiler arasında da milyarlarca kilometrelik boşluklar mevcuttur. Ama bu boşlukların her ikisinde de insan aklını zorlayan, anlama kapasitesini aşan bir düzen hakimdir. 

 Proton ve Nötronlar 

1932 yılına dek, çekirdeğin proton ve elektronlardan oluştuğu sanılıyordu. Çekirdeğin içinde protonla beraber elektronların değil =olduğu ancak o tarihte keşfedilebildi. (Ünlü bilim adamı Chadwick 1932 yılında çekirdeğin içinde nötronun varlığını ispatladı ve bu keşfiyle Nobel ödülü kazandı.) İşte insanoğlunun atomun gerçek yapısıyla tanışması bu kadar yakın tarihte gerçekleşti.

Atom çekirdeğinin ne kadar küçük boyutta olduğundan daha önce bahsetmiştik. Atom çekirdeğinin içine sığabilen bir protonun büyüklüğü ise 10-15 metredir.

Bu kadar küçük bir parçacığın insan hayatında pek bir önemi olamayacağını düşünebilirsiniz. Ancak, insan aklının kavramakta çok zorluk çektiği bir küçüklükte olan bu parçacıklar aslında çevrenizde gördüğünüz her şeyin temelini oluşturur.

Evrendeki Çeşitliliğin Kaynağı

Şu ana kadar tespit edilebilmiş 109 tane element vardır. Tüm evren, dünyamız, canlı-cansız bütün varlıklar, bu 109 elementin çeşitli biçimlerde birleşmeleriyle oluşmuştur. Buraya kadar tüm elementlerin birbirinin benzeri atomlardan oluştuğunu gördük; atomlar da birbirinin aynı parçacıklardan oluşuyordu. Peki madem elementleri oluşturan bütün atomlar aynı parçacıklardan oluşuyor, o halde elementleri farklı kılan, sınırsız çeşitlilikte maddeyi oluşturan nedir?

1- titanyum
2- sarı safir
3- pirit
4- topaz
5- mavi safir
6- kalsit
7- bakır
8- alçı taşı
9- flüorit
10- topaz
11- talk
12- demir
13- zımpara taşı
14- kömür
15- galen
16- quart
17- barit sülfüt
18- feldispat
19- elmas
20- apatit
21- altın
22- feldispat
23- kaya tuzu
24- quartz


Elementlerin temelde birbirlerinden farklı kılan şey atomlarının çekirdeklerindeki proton sayılarıdır. Burada görülen maddeleri birbirinden bu denli değişik kılan işte bu farklılıktır.

Elementleri temelde birbirlerinden farklı kılan şey, atomlarının çekirdeklerindeki proton sayılarıdır. En hafif element olan hidrojen atomunda bir proton, ikinci en hafif element olan helyum atomunda iki proton, altın atomunda 79 proton, oksijen atomunda 8 proton, demir atomunda 26 proton vardır. İşte altını demirden, demiri oksijenden ayıran özellik, yalnızca atomlarının proton sayılarındaki bu farklılıktır. Soluduğumuz hava, vücudumuz, herhangi bir bitki veya bir hayvan ya da uzaydaki bir gezegen, canlı-cansız, acı-tatlı, katı-sıvı her şey... Bunların hepsi sonuçta proton-nötron-elektronlardan meydana gelirler. 

ATOMİK BAĞLAR ve UYUMLULUĞU

Atomları ve molekülleri bir arada tutan çeşitli kimyasal bağlar vardır. Bu bağlar iyonik, kovalent ve zayıf bağlar olarak üçe ayrılır. Bunlardan kovalent bağlar, proteinlerin yapı taşı olan amino asitlerdeki atomları bir arada tutarlar. Zayıf bağlar ise amino asit zincirini, katlanarak aldığı özel üç boyutlu biçimde sabit tutarlar . Yani eğer zayıf bağlar olmasa, amino asitlerin bir araya gelmesiyle oluşan proteinlerin üç boyutlu fonksiyonel biçimlerini almaları imkansızdır. Proteinlerin olmadığı bir ortamda ise canlılıktan söz edilemez.

                                                            
                                    iki su molekülü ve aralarındaki hidrojen bağları

İşin ilginç yanı ise, hem kovalent bağların hem de zayıf bağların ihtiyaç duydukları ısı aralığının yeryüzünde hüküm süren ısı aralığı oluşudur. Oysa zayıf bağlar ile kovalent bağların yapıları ve özellikleri birbirinden tamamen farklıdır, aynı ısıya ihtiyaç duymalarını gerektiren hiçbir doğal sebep yoktur.

Buna rağmen her iki kimyasal bağ da, ancak yeryüzündeki dar ısı aralığı içinde kurulabilir. Eğer kovalent bağlar ile zayıf bağlar farklı ısı aralıklarında işleselerdi, canlılardaki protein oluşumu yine imkansız hale gelirdi. Çünkü proteinlerin oluşumu bu iki kimyasal bağın da aynı anda birlikte kurulmasına bağlıdır. Yani amino asit dizilimini sağlayan kovalent bağların kurulabildiği ısı aralığı, zayıf bağlar için uygun olmasa, protein üç boyutlu son şeklini alamaz, anlamsız ve etkisiz bir zincir olarak kalırdı. Aynı şekilde, zayıf bağların kurulabildiği bir ısıda kovalent bağlar kurulamasa amino asitler birleşemeyeceği için daha ortaya bir protein zinciri bile çıkamazdı.

Bu bilgiler bize, yaşamın temel malzemesi olan atom ile yaşamın barınağı olan Dünya gezegeninin koşulları arasında çok büyük bir uyum olduğunu göstermektedir. Prof. Michael Denton, Nature's Destiny (Doğanın Kaderi) adlı kitabında bu gerçeği şöyle vurgular:

Evrendeki dev ısı yelpazesi içinde, tek ve daracık birısı aralığı vardır ki; bu aralıkta 1) sıvı suya, 2) metastabilite özelliğine sahip çok bol ve farklı organik bileşiklere ve 3) kompleks moleküllerin üç boyutlu şekillerini kararlı kılan zayıf bağlara sahibiz.

Denton'un da belirttiği gibi, canlılık için gereken her türlü fiziksel ve kimyasal bağlar, birlikte ve etkili olarak ancak tek bir ısı aralığı içinde işleyebilirler. Bu daracık ısı aralığı ise, az önce belirttiğimiz gibi, bilinen bütün gök cisimleri arasında sadece Dünya'da vardır.

FİZİKSEL VARLIĞIN SINIRI : KUARKLAR
 
Atomun çekirdeğindeki proton ve nötronlar kuark adı verilen daha küçük parçacıkların biraraya gelmesiyle oluşurlar. Günümüzden 20 yıl öncesine kadar atomları oluşturan en küçük parçacıkların protonlar ve nötronlar oldukları sanılıyordu. Ancak çok yakın bir tarihte, atomun içinde bu parçacıkları oluşturan çok daha küçük parçacıkların var olduğu keşfedildi. 

Bu buluştan sonra, atomun içindeki "alt parçacıkları" ve onların kendilerine has hareketlerini incelemek üzere "Parçacık Fiziği" isimli bir fizik dalı ortaya çıkmıştır. Parçacık fiziğinin yaptığı araştırmalar şu gerçeği açığa çıkarmıştır: Atomu oluşturan proton ve nötronlar da aslında "kuark" adı verilen daha alt parçacıklardan oluşmaktadırlar. 

İnsan aklının kavrama sınırlarını aşan küçüklükteki protonu oluşturan kuarkların boyutu ise daha da hayret vericidir: 10-18 (0,000000000000000001) metre.


Protonun içinde bulunan kuarklar hiçbir şekilde birbirlerinden çok fazla uzaklaştırılamazlar; çünkü, çekirdeğin içindeki parçacıkları bir arada tutmaya yarayan "güçlü nükleer kuvvet" burada da etki etmektedir. Bu kuvvet, kuarklar arasında adeta bir lastik bant gibi görev yapar. Kuarkların arası açıldıkça bu kuvvet büyür ve iki kuark birbirinden en fazla 1 metrenin katrilyonda biri kadar uzaklaşabilir. Kuarklar arasındaki bu lastik bağlar, güçlü nükleer kuvveti taşıyan gluonlar sayesinde oluşur. Kuarklarla gluonlar birbirleriyle son derece güçlü bir iletişim halindedir. Ancak, bilim adamları bu iletişimin nasıl gerçekleştiğini halen keşfedememişlerdir. 

"Parçacık Fiziği" alanında hiç durmadan parçacıklar dünyasını aydınlatmak için araştırmalar yapılmaktadır. Fakat insanoğlu, sahip olduğu akıl, bilinç ve bilgiye rağmen kendisiyle birlikte her şeyi oluşturan özü ancak yeni yeni keşfedebilmektedir. Üstelik bu özün içine girdikçe konu daha da detaylanmakta, insan kuark ismini verdiği parçacığın 10-18 m.lik sınırında takılmaktadır. Peki bu sınırın da altında ne vardır?


Atomun yapısından kurak'ın yapısına: Modern hızlandırıcılar kullanılarak, atomu oluşturan en küçük parçacıkları incelemek mümkündür. Üstteki resim bu ilişkiyi boyutuna göre gösteriyor.

Bugün bilim adamları bu konu ile ilgili çeşitli tezler öne sürerler, ama yukarıda da belirttiğimiz gibi bu sınır fiziksel evrenin son noktasıdır. Bunun altında bulunacak olan her şey madde ile değil, ancak enerji ile ifade edilebilir. Asıl önemli olan nokta ise, insanın tüm teknolojik imkanlarına rağmen yeni keşfedebildiği bir mekanda çok büyük dengelerin, fizik kanunlarının zaten bir saat gibi işliyor olmasıdır. Üstelik bu mekan evrendeki tüm maddenin ve insanın da yapı taşını oluşturan atomun içidir.  İnsan ise kendi vücudundaki organlarda, sistemlerde her saniye işleyen bu kusursuz mekanizmadan yeni yeni haberdar olmaya başlamıştır. Bunları oluşturan hücrelerin mekanizmalarını öğrenmesi ise ancak son birkaç on yıla dayanır. Hücrenin temelindeki atomların, atomların içindeki proton ve nötronların, ve bunların da içindeki kuarkların mekanizmalarındaki üstün yaratılış ise, inançlı olsun ya da olmasın herkesi hayrete düşürecek bir mükemmelliktedir. Burada asıl üzerinde düşünülmesi gereken konu ise, tüm bu kusursuz mekanizmaların insan yaşamındaki her saniye boyunca, insanın herhangi bir müdahalesi olmadan, tamamen kontrolü dışında muntazam bir şekilde çalışmasıdır.

 
BIG BANG'İN DOĞUŞU

Evrenin yaratılışı, bundan bir asır önce, astronomların önemli bir bölümü tarafından gözardı edilen bir kavramdı. Bunun nedeni ise, 19. yüzyıldaki bilim anlayışının, evrenin sonsuzdan beri var olduğu varsayımını benimsemesiydi. Evreni inceleyen bilim adamlarının çoğu, zaten sonsuzdan beri var olan bir maddeler bütünüyle karşı karşıya olduklarını sanıyor ve evren için bir "yaratılış", yani başlangıç olduğunu akıllarından bile geçirmiyorlardı.

Bu "sonsuzdan beri var olan evren" fikri, Batı düşüncesine materyalist felsefe ile birlikte girmişti. Eski Yunan'da gelişen bu felsefe, maddeden başka bir varlık olmadığını savunuyor ve evrenin sonsuzdan gelip sonsuza gittiğini öne sürüyordu. Aslında materyalizm, Ortaçağ'da Kilise'nin hakim olduğu dönemde rafa kaldırılmıştı. Ama Rönesans'tan sonra Batılı bilim ve fikir adamlarının yeniden Eski Yunan kaynaklarına merak sarmaları ile birlikte, materyalizm de yeniden kabul görmeye başladı.

Materyalist evren anlayışını Yeni Çağ'da ilk kez savunan kişi ise, ünlü Alman düşünür Immanuel Kant oldu. Kant, evrenin sonsuzdan beri var olduğunu ve bu sonsuzluk içinde her olasılığın mümkün sayılması gerektiğini öne sürdü. Kant'ın yolunu izleyenler, sonsuz evren fikrini materyalizmle birlikte savunmaya devam ettiler. 19. yüzyıla gelindiğinde ise, evrenin bir başlangıcı, yani yaratılış anı olmadığı şeklindeki iddia, geniş bir kabul görür hale gelmişti. Karl Marx, Friedrich Engels gibi diyalektik materyalistlerin şiddetle sahiplendikleri bu iddia, 20. yüzyıla da taşındı.  Söz konusu "sonsuz evren" fikri, her zaman için modern bilim anlayışıyla içiçe oldu.

Alman felsefeci Immanuel Kant “sonsuz evren” iddiasını Yeni Çağ’da ilk kez gündeme getiren kişiydi. Ancak bilimsel bulgular Kant’ın bu iddiasını geçersiz kıldı.

Bu iddiayı ısrarla sahiplenenlerden biri, 20. yüzyılın ilk yarısında yazdığı kitaplarla materyalizmin ve Marksizm'in ünlü bir savunucusu haline gelen Georges Politzer idi. Politzer, Felsefenin Başlangıç İlkeleri adlı kitabında, "sonsuz evren" modelinin geçerliliğine güvenerek yaratılışa şöyle karşı çıkıyordu:

Evren yaratılmış bir şey değildir. Eğer yaratılmış olsaydı, o takdirde, evrenin Tanrı tarafından belli bir anda yaratılmış olması ve evrenin yoktan varedilmiş olması gerekirdi. Yaratılışı kabul edebilmek için, her şeyden önce, evrenin var olmadığı bir anın varlığını, sonra da, hiçlikten (yokluktan) bir şeyin çıkmış olduğunu kabul etmek gerekir. Bu ise bilimin kabul edemeyeceği bir şeydir.

Politzer, yaratılışa karşı sonsuz evren fikrini savunurken, bilimin kendi tarafında olduğunu sanıyordu. Oysa bilim, çok geçmeden, Politzer'in  "eğer öyle olsa, bir Yaratıcı olduğunu kabul etmek gerekir" dediği gerçeği, yani evrenin bir başlangıcı olduğu gerçeğini ispatladı.

1920'li yıllar, modern astronominin gelişimi açısından çok önemli yıllardı. 1922'de Rus fizikçi Alexandre Friedmann, Einstein'in genel görecelik kuramına göre evrenin durağan bir yapıya sahip olmadığını ve en ufak bir etkileşimin evrenin genişlemesine veya büzüşmesine yol açacağını hesapladı. Friedmann'ın çözümünün önemini ilk fark eden kişi ise Belçikalı astronom Georges Lemaitre oldu. Lemaitre, bu çözümlere dayanarak evrenin bir başlangıcı olduğunu ve bu başlangıçtan itibaren sürekli genişlediğini öngördü. Ayrıca, bu başlangıç anından arta kalan radyasyonun da saptanabileceğini belirtti.

Bu bilim adamlarının teorik hesaplamaları o zaman çok ilgi çekmemişti. Ancak 1929 yılında gelen gözlemsel bir delil, bilim dünyasına bomba gibi düşecekti. O yıl California Mount Wilson gözlemevinde, Amerikalı astronom Edwin Hubble astronomi tarihinin en büyük keşiflerinden birini yaptı. Hubble, kullandığı dev teleskopla gökyüzünü incelerken, yıldızların uzaklıklarına bağlı olarak kızıl renge doğru kayan bir ışık yaydıklarını saptadı. Bu buluş, o zamana kadar kabul gören evren anlayışını temelden sarsıyordu.

Çünkü bilinen fizik kurallarına göre, gözlemin yapıldığı noktaya doğru hareket eden ışıkların tayfı mor yöne doğru, gözlemin yapıldığı noktadan uzaklaşan ışıkların tayfı da kızıl yöne doğru kayar. (Gözlemciden uzaklaşmakta olan bir trenin düdük sesinin gittikçe incelmesi gibi.) Hubble'ın gözlemi ise, bu kanuna göre, gökcisimlerinin bizden uzaklaşmakta olduklarını gösteriyordu. Hubble, çok geçmeden çok önemli bir şeyi daha buldu; yıldızlar ve galaksiler sadece bizden değil, birbirlerinden de uzaklaşıyorlardı. Her şeyin birbirinden uzaklaştığı bir evren karşısında varılabilecek tek sonuç ise, evrenin "genişlemekte" olduğuydu.

Edwin Hubble, dev teleskobuyla yaptığı gözlemlerde evrenin genişlediğini fark etti. Hubble böylece “sonsuz evren” efsanesini yıkacak Big Bang teorisinin de ilk delilini bulmuş oluyordu. 

Kısa bir zaman önce Georges Lemaitre tarafından "kehanet" edilen bu gerçek, aslında yüzyılın en büyük bilimadamı sayılan Albert Einstein tarafından da daha önceden dile getirilmişti. Einstein 1915 yılında ortaya koyduğu genel görecelik kuramıyla yaptığı hesaplarda evrenin durağan olamayacağı sonucuna varmıştı. Ancak bu buluş karşısında son derece şaşıran Einstein bu "uygunsuz" sonucu ortadan kaldırmak için denklemlerine "kozmolojik sabit" adını verdiği bir faktör ilave etmişti. Çünkü o sıralar, astronomlar ona evrenin statik olduğunu söylüyorlardı, o da kuramının bu modele uymasını istemişti. Ancak sonradan bu kozmolojik sabiti "kariyerinin en büyük hatası" olarak tanımlayacaktı. Hubble'ın ortaya koyduğu evrenin genişlediği gerçeği, kısa bir süre sonra yeni bir evren modelini doğurdu. .Evren genişlediğine göre, zamanda geriye doğru gidildiğinde çok daha küçük bir evren, daha da geriye gittiğimizde "tek bir nokta" ortaya çıkıyordu.

Yapılan hesaplamalar, evrenin tüm maddesini içinde barındıran bu "tek nokta"nın, korkunç çekim gücü nedeniyle "sıfır hacme" sahip olacağını gösterdi Evren, sıfır hacme sahip bu noktanın patlamasıyla ortaya çıkmıştı. Bu patlamaya "Big Bang" (Büyük Patlama) dendi ve bu teori de aynı isimle bilindi. Big Bang'in gösterdiği önemli bir gerçek vardı: Sıfır hacim "yokluk" anlamına geldiğine göre, evren "yok" iken "var" hale gelmişti. Bu ise, evrenin bir başlangıcı olduğu anlamına geliyor ve böylece materyalizmin "evren sonsuzdan beri vardır" varsayımını geçersiz kılıyordu. Fakat sonuç itibarıyla materyalist düşünce  yanlıştır denemeyeceği gibi dinsel yaratılış düşünceside yanlış denemez. Henüz kuramsal düşüncelerden öteye geçebilmiş değiliz.Ve daha derin araştırmalar sonucunda bilim daha net bir varoluş kuramına ulaşacaktır.

 

Dipnotlar
Big bang
Théma Larousse, Tematik Ansiklopedi Bilim ve Teknoloji, Evren ve Dünya, Matematik, Fizik, Kimya,Teknoloji, s. 300
 
Dipnotlar
Atomun içindeki boşluk
Taşkın Tuna, Uzayın Ötesi, Boğaziçi Yayınları, 1995, s. 53
Jean Guitton, Tanrı ve Bilim, Simavi Yayınları, 1993, s. 62
Dipnotlar
Atomun diğer ucu elektronlar
 Taşkın Tuna, Uzayın Ötesi, Boğaziçi Yayınları, 1995, s. 52
 Stephen Hawking'in Evreni, David Filkin, BBC Books, Aksoy Yayıncılık, s 142, 143

Not: Orijinal metin üstünde düzenleme yapılmıştır.

Alıntı: http://www.evreninyaratilisi.com/html/temel_kuvvetler.html 

                     Ana Sayfa / İndex / Ziyaretçi Defteri /  E-Mail / Kuantum Fiziği / Roket bilimi

                                                  Time Travel Technology /  UFO Technology / CetinBAL