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Traversable wormholes: the Roman ring
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In this brief report I introduce a yet another class of geometries for which semi-classical chronol-
ogy protection theorems are of dubious physical reliability. I consider a “Roman ring” of traversable
wormholes, wherein a number of wormholes are arranged in a ring in such a manner that no subset
of wormholes is near to chronology violation, though the combined system can be arbitrarily close
to chronology violation. I show that (with enough wormholes in the ring) the gravitational vacuum
polarization (the expectation value of the quantum stress-energy tensor) can be made arbitrarily
small. In particular the back-reaction can be kept arbitrarily small all the way to the “reliability
horizon”—so that semi-classical quantum gravity becomes unreliable before the gravitational back
reaction becomes large.
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I. INTRODUCTION

Working within the context of semi-classical quantum
gravity, Krasnikov [1] and Sushkov [2] have recently pro-
vided examples of two classes of spacetimes containing
time machines for which the gravitational vacuum polar-
ization is arbitrarily small all the way to the chronology
horizon. In related developments Kay, Radzikowski, and
Wald [3], and Cramer and Kay [4] have shown that these
geometries suffer from diseases on the chronology horizon
itself. More recently, I have argued [5] that we should not
physically trust semi-classical quantum gravity once we
reach the chronology horizon.

In this brief report I wish to present yet another class
of spacetimes for which the gravitational vacuum polar-
ization can be made arbitrarily small. Implications for
chronology protection [6,7] are briefly discussed.

II. THE ROMAN RING

Given one wormhole, it appears (classically) to be
absurdly easy to turn it into a time machine [8–11],
though quantum effects vitiate this particular ap-
proach [6,7,10–12].

Given two wormholes, it appears (even including quan-
tum effects) to be relatively easy to turn the compound
system into a time machine without each individual
wormhole itself being a time machine [13,14].

Given many wormholes, I shall now show that it ap-
pears to be even easier to turn the conglomeration into a
time machine (with all sub-collections of wormholes not
themselves being time machines).

The key technical result is that, for any spacetime of
non-trivial topology, the gravitational vacuum polariza-
tion may be estimated by adiabatic techniques to be

〈T µν(x)〉 ≈ ∆γ

h̄

sγ(x, x)4
tµν . (1)

Here sγ(x, x) is the length of the shortest spacelike
geodesic connecting the point x to itself, while tµν is a
dimensionless tensor built out of the metric and tangent
vectors to this geodesic. ∆γ is the van Vleck determinant
associated with this geodesic.

For the one-wormhole system this van Vleck determi-
nant can be estimated (insofar as the throat of the worm-
hole is reasonably thin) to be close to 1. For the two-
wormhole system the van Vleck determinant is a com-
plicated function of relative positions and velocities. I
will now provide a simple class of multiple wormhole
configurations in which the van Vleck determinant is
calculable—and thereby show that there exists a class of
geometries for which the van Vleck determinant can be
made arbitrarily small all the way down to the chronol-
ogy horizon.
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FIG. 1. Schematic representation of a single (chronology
respecting) wormhole. We identify two timelike lines that are
separated by a spatial jump L and time shift T , with T ≪ L.

Start by taking N identical wormholes in otherwise
flat Minkowski spacetime. (These may be taken to be
simple cut-and-paste wormholes of the type discussed
in [12,16,17].) For simplicity assume that all wormhole
mouths are at rest with respect to each other; so each
wormhole is characterized by a spatial jump L and time-
shift T with T ≪ L.

If we look at a geodesic that wraps once through a
single wormhole, the invariant interval is simply s2

1 =
L2 − T 2 ≫ 0.

Now arrange the N wormholes in a big symmetric poly-
gon, so that the exit mouth of one wormhole is a normal-
space distance of ℓ from the entrance mouth of the next
wormhole. (We will want ℓ ≪ L, so that the normal
space distance travelled to get from one wormhole to the
next is less than the distance then “jumped” by going
through the wormhole.)

m

m

m

m

m

m

m

m

@
@

@R �
�

��

@
@

@I�
�

�	

ℓ

ℓ

ℓ

ℓ

L

L

L L

FIG. 2. Schematic representation of a Roman ring. This
example contains four wormholes. In each wormhole the two
mouths are separated by a spatial jump L. The normal space
distance from the exit mouth of one wormhole to the entrance
mouth of the next is ℓ.

This “Roman ring” is a generalization of the two-
wormhole “Roman configuration” [8,12–14]. (The real-
ization that wormholes generically seem to imply time
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travel can be traced back to an observation by Tom
Roman [11]. The “Roman configuration” was the first
two-wormhole time machine constructed by Morris and
Thorne [8].) The N -wormhole “Roman ring” can holis-
tically be close to forming a time machine even if its
individual components are perfectly well behaved.

Consider a closed geodesic that wraps once around the
entire compound system: this consists of N segments of
length ℓ in normal space, plus N time-shifts of magnitude
T from going through the N wormholes. The invariant
interval of this once-through-the-system geodesic is

s2
γ = (Nℓ)2 − (NT )2 = N2(ℓ2 − T 2). (2)

Because it is the normal-space distance between the
wormhole mouths that enters here (ℓ; not the spatial
jump L) we can easily make this geodesic timelike.

For a conformally coupled massless field the symme-
tries enforce

tµν = ηµν − 4tµtν . (3)

Here ηµν is the spacetime metric, which is flat except at
the wormholes themselves; tµ is the tangent vector to the
geodesic and is given (up to rotations) by

tµ =
(T, 0, 0, ℓ)√

ℓ2 − T 2
=

N(T, 0, 0, ℓ)

sγ

. (4)

So anywhere along the geodesic γ we can estimate

〈T µν〉 ≈ ∆γ

h̄

s4
γ

[

ηµν − 4
N2(T, 0, 0, ℓ)µ(T, 0, 0, ℓ)ν

s2
γ

]

. (5)

Of course, the only reason we are bothering with this
Roman ring geometry is because the extreme symmetry
makes it relatively easy to calculate the van Vleck deter-
minant. Using the thin-throat approximation, plus the
tidal reformulation of the van Vleck evolution equation
presented in [15], we may calculate the van Vleck deter-
minant at the surface of any of the wormhole throats to
be [13]

∆γ =

[

N

UN−1(1 + ℓ
R

)

]2

. (6)

Here UN (x) is a Chebyshev polynomial of the second
kind, and R is the radius of each wormhole mouth (as-
sumed spherical). The time shift T , and spatial jump
L quietly cancel out of the calculation for the van Vleck
determinant.

Proving the above result is a combinatoric agony that
is presented in excruciating detail in [13]. That calcula-
tion was carried out for a slightly different configuration:
a geodesic that wraps N times through a single worm-
hole, but that calculation can just as easily be adapted to
the present case; a geodesic that wraps once through N

wormholes—note that the high degree of symmetry in the
Roman ring configuration is essential for this purpose.

If we are satisfied with the situation ℓ ≫ R (a perfectly
sensible constraint—manipulating wormholes is likely to
be quite difficult enough without having them bump into
each other) then we can approximate

∆γ ≈ N2

(

R

2ℓ

)2(N−1)

(7)

As a consistency check, compare this with the results
quoted by Kim and Thorne [10], Lyutikov [14], and
Visser [13].

The physical interpretation for this result is simple: the
van Vleck determinant measures geometrically induced
deviations from the inverse-square law [12]. By assump-
tion, we are sitting right on top of one wormhole mouth,
and the above result can be thought of as due to N − 1
defocussing events which occur as we move through the
N − 1 other wormholes in the system to get back to our
starting point.

The van Vleck determinant may now be made as small
as desired simply by adding more wormholes to the sys-
tem.

At the throat of any one of the wormholes, for any
ℓ > T , we have

〈T µν〉 ≈ h̄
N2

s4
γ

(

R

2ℓ

)2(N−1)

×
[

ηµν − 4N2 (T, 0, 0, ℓ)µ (T, 0, 0, ℓ)ν

s2
γ

]

. (8)

So at fixed T and ℓ we have

〈T µν〉 ≈ h̄
1

N2(ℓ2 − T 2)2

(

R

2ℓ

)2(N−1)

×
[

ηµν − 4
(T, 0, 0, ℓ)µ (T, 0, 0, ℓ)ν

ℓ2 − T 2

]

. (9)

In particular 〈T µν〉 → 0 as N → ∞.
Now suppose the whole system is adiabatically shrunk,

keeping T fixed but letting ℓ → T +. The “reliability hori-
zon” [5], the location at which we should cease to believe
the applicability of semi-classical quantum gravity, will
be located at

√
ℓ2 − T 2 = ℓPlanck.

(General arguments supporting this designation are
provided in [5]. In the present more specific context

it suffices to realise that once
√

ℓ2 − T 2 < ℓPlanck, any
quantum field [including gravitons] propagating on this
background will be subject to Planck scale physics.)

At the throat of any one wormhole, when the system
is at the reliability horizon, we have

〈T µν〉 ≈ h̄
1

N2ℓ4
Planck

(

R

2ℓ

)2(N−1)

×
[

ηµν − 4
(ℓ, 0, 0, ℓ)µ (ℓ, 0, 0, ℓ)ν

ℓ2
Planck

]

. (10)

Again 〈T µν〉 → 0 as N → ∞.
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Thus with enough wormholes, we can arrange the grav-
itational vacuum polarization, and therefore the back-
reaction, to be arbitrarily small all the way down to the
reliability horizon.

III. IMPLICATIONS

This counter-example is enough to show that it is im-
possible to come up with a chronology protection theo-
rem that makes reference only to the “reliable region”—
and so it is impossible to come up with chronology protec-
tion theorem that is physically reliable within the context
of semi-classical quantum gravity.

In this regard I am completely in agreement with Kras-
nikov [1] and Sushkov [2], though the current class of
models is obtained in a radically different (and perhaps
more physically transparent) manner.

My interpretation is perhaps a little different: I view
this not as a vindication for time travel enthusiasts but
rather as an indication that resolving issues of chronology
protection requires a fully developed theory of quantum
gravity [5].
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