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These are the transparencies of an invited plenary lecture at the annual meeting of the
Deutsche Physikalische Gesellschaft in Ulm, Germany, 14-18 March, 2004. The lecture was
delivered by Rainer Verch on Wednesday, 18 March 2004. The lecture was announced as
follows in the book of abstracts (Verhandlungen) of the meeting:

Title:

The current status of quantum field theory in curved spacetime

Presented by:

Rainer Verch, MPI for Mathematics in the Sciences, Leipzig

Abstract:

In this talk, I will report on the developments in quantum field theory in curved spacetime
which, during the past 10 years, have led to impressive progress. These developments are
centered around concepts like the microlocal spectrum condition, quantum energy inequalities
and local general covariance. With the help of these concepts, it has been possible to
formulate and complete the renormalization program of perturbative quantum field theory
on generic spacetime backgrounds, and to arrive at strong structural theorems like PCT and
the connection between spin and statistics. Furthermore, some insight into the qualitative
behavior of semiclassical gravity has been gained, showing that the occurrence of exotic
spacetime scenarios is suppressed by the dynamical stability of quantum fields.
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Quantum Field Theory and Gravitation

Quantum Field Theory: Describes structure of

elementary particles at small scales,

interaction processes with very high

energy transfer, localized in space

and time

relevant in the sub-microscopic domain

∼ 10−19m

Gravitation: Interaction with infinite range,

effective for large aggregates of matter

relevant (dominating) in the

macroscopic and cosmic domain

∼ 2 · 1026m

Combination: Processes and states of matter in

extreme situations, i.e.:

extreme amounts of energy or matter

at very small length scales

e.g., • collapse of a star

to a black hole,

space-time singularity in its interior

• Cosmology:

Initial singularity of the Universe

Planck scale, �P = 10−35m
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Generally expected:

The current concepts of gravitation/general relativity and

quantum physics are insufficient for an understanding of such

phenomena, in particular:

Physical meaning of the singularity theorems needs to be clarified.

A theory of “quantum gravity” is needed which provides an

extension (and unification) of general relativity, gravitation and

quantum physics.

    General
     Relativity

    Quantum Gravity

      Relativity
   Special

   Mechanics
   Quantum

     QFT

There are approaches to quantum gravity so far, most prominently:

• Loop Quantum Gravity

• Noncommutative Geometry

• String/M Theory

...but still somewhat speculative.
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An intermediate step on the route to quantum gravity:

Quantum Field Theory in Curved Spacetimes

and Semiclassical Gravity.

Relativity

Quantum Gravity

General

spacetime
QFT in curved

Relativity
Special

QFT

Mechanics
Quantum

Quantum Field Theory in Curved Spacetimes means:

• microscopic (qft-) description of matter

in outer gravitational fields,

• the structure of space and time remains classical

(non-quantized), described in the sense of general relativity
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This approach leads to the following situation:

� Spacetime is “curved”, curvature induced by “outer” mass

distribution ↔ gravitational field

� Matter described by quantum fields propagating in the

classical, curved “background” spacetime in the sense of “test

fields”, i.e.:

• to first approximation: Matter fields carry low mass-energy

density, negligible as gravitational source

• further step: Consider mass-energy distribution of quantum

matter fields as additional gravitational source; correction to

outer gravitational fields (semiclassical gravity)

Interesting effects:

� Hawking effect (thermal radiation by black holes)

� Unruh effect

� Particle creation in the early universe

� Casimir effect (boundary effect)
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Basics of the Theory

General Relativity:

Spacetime structure described by:

M , gµν

4-dimensional manifold spacetime metric governs
“catalogue of events” propagation of light and

material particles

Einstein’s field equations of gravity:

Rµν(x) −
1

2
gµν(x)R(x) = −8πG

c2
Tµν(x)

Curvature quantities of spacetime energy-momentum tensor of
metric gµν , describe gravity matter distributed in spacetime

Fundamental principle of general relativity:

“presence of energy/matter enforces spacetime curvature,
spacetime curvature governs the motion of matter”

Analogue: Iron ball on sheet of elastic material

Without presence of a heavy mass,
sheet = spacetime flat,
no curvature for blue ball
to follow

Presence of a "source mass"
inducing curvature,
blue ball follows curvature
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Quantum Field Theory:

A simple model:

Linear, scalar Klein-Gordon field

on a spacetime M , gµν

Field equation:

(∇µ∇µ +m2)ϕ(x) = 0

Advanced and retarded fundamental solutions
(Green’s functions)

G+ and G−
are uniquely determined.

Quantization through replacement

ϕ(x) −→ Φ(x)

number operator-valued object

with the properties

Φ(x) = Φ(x)
∗

(hermiticity)

(∇µ∇µ +m
2
)Φ(x) = 0 (field equation)

[Φ(x),Φ(y)] = i�(G+(x, y) −G−(x, y))1

(commutation relations)

R.Verch, MPI-MIS Leipzig 8



Wanted: Hilbert space representations of these algebraic

relations, d.h.

Φ(x) −→ operator (unbounded) in a Hilbert space

Problem:

There are many different such representations, each describing

different physics!

Which is the correct one?

This is of particular relevance for the

semiclassical Einstein equations

Rµν(x) −
1

2
gµν(x)R(x) = −8πG

c2
(Tµν(x) + 〈Tµν(x)〉)

• Tµν(x) = energy-momentum tensor of outer mass distribution

• 〈Tµν(x)〉 = expectation value of energy-momentum tensor

of Φ(x) in Hilbert space representation:

〈Tµν(x)〉 = 〈ψ|Tµν(x)|ψ〉

The global qualitative behaviour of solutions to the semiclassical

Einstein equations depends crucially on the dynamical stability

properties of the right hand side;

dynamical stability properties of 〈Tµν〉 depend crucially on the

Hilbert space representation of the quantum field operators.
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In special relativistic quantum field theory:

Selection of Hilbert space representations through their dynamical

behaviour with respect to spacetime symmetries.

Typical requirement:

For each “direction of time” �e there should be a Hamilton

operator H(�e ) such that (in the Heisenberg picture)

eiH(�e )tΦ(x)e−iH(�e )t = Φ(x+ t�e )

with H(�e ) ≥ 0 (spectrum condition),

and existence of a vacuum vector ψ0 with

H(�e )ψ0 = 0

These conditions

• characterize “dynamical stability” of a quantum field theory

in each Lorentz frame,

• are important for a clear-cut concept of particles,

• are independent of the particular quantum field model, i.e.

independent of particle type or field equation,

• together with Poincaré covariance they allow important,

model-independent conclusions about the general structure of

quantum field theories, e.g.: PCT, spin and statistics and all

that.

To be desired: For quantum fields on curved spacetimes, there

should be a similar, general characterization of “dynamically

stable” Hilbert space representations.
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But: In the presence of spacetime curvature, there are no global

inertial frames!

The concept of “particle” or “vacuum” becomes observer-

dependent.

Illustration:

The Fulling-Unruh Effect: An observer moving with constant

acceleration registers the vacuum state – defined with respect

to a Lorentz frame – as a thermal equilibrium state having the

temperature

Ta =
�a

2πkBc
, a = proper acceleration

x

x0

1
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Hawking Effect: An observer kept (by acceleration) at constant

distance to the black hole will register a thermal equilibrium state

(at large times) having the temperature

THawking =
�c3

8πGM
, M = mass of black hole,

if the quantum field state at early times (before the stellar

collapse to a black hole) was a vacuum state.

singularity

"time"

distance from center of star

horizon
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Hawking Effect and analogy to the Fulling-Unruh Effect

singularity

horizon

−∆Ε
+ ∆Ε
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"

Lichnerowicz 1960, DeWitt−Brehme 1961
Dirac 1935,

Pre−QFT period:
Schrodinger 1932,

particle creation in an expanding universe

Early period:
Takahashi−Umezawa 1957,   Parker 1969

Zeldovich
Hawking
Unruh
Fulling

starting with the
advent of the
Hawking effect,
QFT in CST becomes
a subject in its own
right

Golden era (~1973−1978):

 

   <−> Hadamard condition

   Spin and statistics, PCT

   <−> Quantum energy inequalities

   Causal regularity of solutions to 

   microlocal spectrum condition

   Local renormalization programme
   Local general covariance

A Brief History of QFT in CST

 

Phase of consolidation (~1978−1993):

   Scattering theory on black hole spacetimes,
   better understanding of Hawking effect

Dimock, Ford, Fredenhagen, Fulling, Haag,
Kay, Sewell, Wald

   semiclassical gravity
 Brunetti, Fewster, Ford, Fredenhagen,

   Hadamard states 
   Quantum energy inequalities

The past 10 years:

Kay, Junker, Moretti, Pfenning, Radzikowski,  
Roman, Sahlmann, Verch, Wald ...

Hollands,
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Hadamard Condition

Since 1978, a better understanding was successively reached

how to characterize the relevant Hilbert space representations of

quantum fields in curved spacetimes (for linear quantum fields):

• Hadamard states (resp., Hadamard representations) allow a

systematic definition of 〈Tµν(x)〉 (Wald 1978)

• Hawking effect appears in a natural manner in Hadamard

representations (Haag, Narnhofer u. Stein 1984; Fredenhagen

u. Haag 1990; Kay u. Wald 1991)

• Hadamard states define a unique Hilbert space representation

(Verch 1994)

Hadamard condition on 2-point correlation:

〈ψ|Φ(x)Φ(y)|ψ〉 =
U(x, y)

σ(x, y)
+ V (x, y)ln(σ(x, y)) +W (x, y)

σ(x, y) = squared geodesic distance between x and y
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Microlocal Spectrum Condition (µSC)

An important step was the introduction of the

microlocal spectrum condition by Radzikowski 1996; Brunetti,

Fredenhagen and Köhler 1996.

The microlocal spectrum condition for a state vector |ψ〉 requires

that

(̂χΦ)(k)|ψ〉 ∼ 1

|k|N ∀ N (|k| → ∞) ,

if k ∈ T ∗
xM is not contained in the (dual) forward light cone of

x ∈ M , with test-fuction χ concentrated around x.

(It says that WF (f �→ Φ(f)|ψ〉) is contained in the forward

light cone bundle)

"time"

"space"

T Mx

M

x
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The microlocal spectrum condition was shown to be equivalent

to the Hadamard condition by Radzikowski 1996:

For a linear quantum field Φ in a Hilbert space representation,

〈ψ|Φ(x)Φ(y)|ψ〉 is Hadamard

⇐⇒
|ψ〉 fulfills µSC

The µSC is more general than the Hadamard condition since it

can be generalized to nonlinear quantum fields,

by imposing fall-off conditions on expressions of the form

(̂χ1Φ)(k1) · · · (̂χnΦ)(kn)|ψ〉

for |k1| + · · · + |kn| → ∞ outside of certain conic sets

This was used by Brunetti and Fredenhagen for the perturbative

construction of interacting quantum field theories in curved

spacetimes — see below.

The µSC can be seen as a short distance/high energy remnant

of the spectrum condition in combination with the equivalence

principle
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Quantum Energy Inequalities (QEIs)

In 1978, L. Ford introduced another condition for “admissible”

Hilbert space representations of quantum fields on curved

spacetimes:

They should satisfy quantum energy inequalities:

� for every timelike curve γ

� for every positive C∞ weight function f

there should be a bound of the form

min
|ψ〉

Z
γ

dτ f(τ)〈ψ|T00(τ)|ψ〉 ≥ −cγ,f > −∞

Interpretation: When averaging over finite time, it is impossible

to extract an arbitrary amount of energy from any state.

Note: The classical pointwise weak energy energy condition

T00(x) = Tµν(x)t
µ
t
ν ≥ 0 for all timelike vectors t

µ
at x ∈ M

is violated in quantum field theory (also on Minkowski spacetime);

it holds that

min
|ψ〉

〈ψ|T00(x)|ψ〉 = −∞ !

Thus, the QEIs impose a nontrivial constraint on Hilbert space

representations to be admissible.
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Relations Between the Conditions: Equivalence Results

For Hilbert space representations of linear quantum fields (Klein-

Gordon, Dirac, Maxwell) on generic spacetime manifolds, it could

be shown (Fewster 2000; Fewster and Verch 2001; Fewster and

Pfenning 2003) that

µSC =⇒ QEIs

For linear quantum fields on static spacetimes, it was found that

the following conditions on their Hilbert space representations are

equivalent (Fewster and Verch 2002):

µSC “microscopic condition”

⇐⇒ QEIs “mesoscopic condition”

⇐⇒ existence of thermal equilibrium states (passive states)

“macroscopic condition”

This shows that µSC and QEIs can be viewed as equivalent

characterizations of quantum field states (or Hilbert space

representations) which are dynamically stable — they also coincide

with the usual characterizations of the “correct” Hilbert space

representations when the spacetime admits time-symmetries.

We will soon see other consequences of imposing these conditions

in quantum field theory in curved spacetimes.
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Local General Covariance

In General Relativity, “spacetime” is not a priori given, but needs

to be dynamically determined, while observing the principle of

general covariance.

The recent formulation of this principle in QFT in CST is like this

(Verch 2001; Hollands and Wald 2001; Brunetti, Fredenhagen

and Verch 2003):

Local general covariance

(1) To every spacetime (M, g), a quantum field is assigned:

(M, g) −→ Φ[M,g](x) quantum field on (M, g)

(2) If two spacetimes have isometric subregions, then the Hilbert

space representations of the corresponding quantum fields

(restricted to the subregions) have to be isomorphic.

[2]
(x)

∋ Φ(x)
[1]Φ

M    ,    g M   ,   g

N N

1 2 21

   isomorphic

      isometric

for all    x        N
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Spin and Statistics and PCT for Generally Covariant QFT

Let

(M, g) −→ Φ[M,g]

be a quantum field on curved spacetimes fulfilling local general

covariance.

(I) Spin and Statistics (Verch 2001):

Suppose that the quantum field fulfills the Wightman axioms

on Minkowski spacetime and obeys a causal dynamical law.

Then

Φ[M,g] has the correct relation between spin and statistics on

each (M, g) :

— if Φ[M,g] has integer spin, it is bosonic

— if Φ[M,g] has half-integer spin, it is fermionic.

(II) PCT (Hollands 2003):

Suppose that the quantum field fulfills (a strong form of)

µSC and admits an operator product expansion around each

point in spacetime.

Then for each given spacetime there is an anti-linear operator

relating the operator product expansion of the quantum field

on the given spacetime with the operator product expansion of

the conjugate-charged quantum field on the same spacetime,

but with the reversed spacetime-orientation.

Linear quantum fields of fixed type (e.g Dirac, Proca..) in

µSC representations are examples for local generally covariant

quantum fields
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µSC + Local General Covariance

⇒ Renormalized Perturbation Theory of P (Φ)4 on CST

In order to study interacting quantum fields — here, the scalar

field with P (Φ)4 self-interaction — one starts with the free

scalar Klein-Gordon field

Φ = Φ[M,g] on the spacetime (M, g)

in a µSC Hilbert space representation and then tries to define

• normal ordered products

Nn(Φ(x1) · · ·Φ(xn)) , and

• time ordered products

Tn(Φ(x1) · · ·Φ(xn))

of the field operators to all orders n, as well as time-ordered

products of normal ordered products, and so on.

When this is achieved, then the effects of a given P (Φ)4 (self-)

interaction can be calculated to all orders of perturbation theory

using suitable combinations of these expressions.

This program was recently successfully implemented in quantum

field theory in curved spacetime:
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Infinite Renormalization (Brunetti and Fredenhagen 2000):

Brunetti and Fredenhagen generalized the Stueckelberg-Shirkov-

Epstein-Glaser approach to renormalizing selfinteracting quantum

fields to curved spacetime.

Using µSC, they showed that the Nn, Tn... can be defined

inductively by a consistent prescription extracting finite parts of

their singularities at coinciding spacetime points.

The Nn, Tn... are then defined up to smooth parts

(renormalization ambiguity). The renormalizability criteria are

the same as the power-counting criteria on Minkowski spacetime.

Reduction of the Renormalization Ambiguity and General
Covariance (Hollands and Wald 2001, 2002):

Hollands and Wald showed that the normal ordering and time

ordering prescriptions can be implemented such that

(M, g) −→ Nn[M,g] , (M, g) −→ Tn[M,g] , etc

fulfill the principle of local general covariance.

Then the remaining ambiguity in the definition of these quantities

is up to only finitely many parameters for each order of

perturbation theory (i.e., for each n):

T̃n(x1, . . . , xn) = Tn(x1, . . . , xn) + Pn(x1, . . . , xn)

where Pn is a (known) polynomial in the Nk and curvature

quantities.
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Exotic Spacetimes as Solutions to Semiclassical Gravity?

Spacetimes admitting closed causal curves correspond to the

idea of time travel or time machines

Examples:
− Spacetimes with “rolled up time-axis”

(e.g., Anti-de Sitter)

− Gödel’s Universe

− spacetimes with extended, cylindrical,

rotating masses (Tipler 1974)

− Spacetimes with “Cauchy-Horizons” –

correspond to the idea that a time machchine

can be “switched on” (Hawking 1991)

A related class of spacetime scenarios are those admitting

superluminal travel

Examples:

− “wormholes” connecting distant parts of spacetime

by a “tunnel” (Morris u. Thorne 1988)

− “warp drive” spacetimes, where the spacetime metric

is deformed “externally” and “faster than light”

(Alcubierre 1994)

Such scenarios give rise to all kinds of paradoxes.
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faster travel by "w
arp−drive"  (A

lcubierre (1994))

tim
e
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For solutions to the classical Einstein equations, these scenarios

are severely constrained (essentially, excluded) by the dynamical
stability conditions for classical matter, such as the weak energy

condition:

Tµν(x)t
µ
t
ν ≥ 0 , t

µ
timelike

As pointed out before, such pointwise positivity conditions for

the energy are violated in quantum field theory:

〈Tµν(x)〉tµtν

can – at each single spacetime point x – attain arbitrarily positive

as well as negative values!

Observing this, will there appear solutions to the equations of

semiclassical gravity,

Rµν(x) −
1

2
gµν(x)R(x) = −8πG

c2
〈Tµν(x)〉 ,

in which “closed timelike curve scenarios” or “superluminal travel

scenarios” occur — maybe even generically?

Alternatives:

Yes! (Kip Thorne) vs. No! (Stephen Hawking)
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Results on this case:

� time machines (Kay, Radzikowski and Wald 1997)

For quantum field theories in Hilbert space representations

fulfilling µSC and existence of a causal dynamical law, spacetimes

with Cauchy-horizons are excluded as solutions to the equations

of semiclassical gravity.

� warp drive (Pfenning and Ford 1997)

For quantum fields in Hilbert space representations fulfilling QEIs,

extreme amounts of negative energy (comparable to the total

energy of the luminous universe) would have to be concentrated

in microscopic domains of space.

� wormholes (Ford and Roman 1995)

Again, for quantum fields in Hilbert space representations

fulfilling QEIs, extreme amounts of negative energy (comparable

to the total energy of the luminous universe) would have to

be concentrated in microscopic domains of space in order to

sustain macroscopic wormholes. (The situation for microscopic

wormholes is not completely clarified.)
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Summary

Most of the central results known for QFT on Minkowski

spacetime can now also be obtained in QFT on CST — despite

the lack of spacetime symmetries and the related lack of special

states like the vacuum state.

� The correct Hilbert space representations of quantum fields

can be characterized by µSC or QEIs

� µSC and QEIs coincide with the usual requirement of existence

of thermal equilibrium or vacuum states in the presence of

spacetime symmetries (dynamical stability)

� Local general covariance is a powerful principle which allows

it to derive model-independent, structural results like spin-

statistics or PCT

� Complete renormalization program for P (φ)4 interactions

compatible with dynamical stability and local general

covariance

� Principles of dynamical stability (µSC, QEIs) exclude

exotic spacetime scenarios as solutions to the equations

of semiclassical gravity
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