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Abstract

It has been speculated that Lorentzian wormholes of the Morris-Thorne type might be

allowed by the laws of physics at submicroscopic, e.g. Planck, scales and that a sufficiently

advanced civilization might be able to enlarge them to classical size. The purpose of this

paper is to explore the possibility that inflation might provide a natural mechanism for the

enlargement of such wormholes to macroscopic size. A new classical metric is presented

for a Lorentzian wormhole which is imbedded in a flat deSitter space. It is shown that

the throat and the proper length of the wormhole inflate. The resulting properties and

stress-energy tensor associated with this metric are discussed.

PACS. numbers: 98.80.DR, 04.90.+E
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I. INTRODUCTION

There has been much interest recently in the Lorentzian signature, traversable worm-

holes conjectured by Morris and Thorne (MT) [1,2]. These wormholes have no horizons

and thus allow two-way passage through them. As a result, violations of all known en-

ergy conditions, including the weak (WEC) [3] and averaged weak (AWEC) [4] energy

conditions, must unavoidably occur at the throat of the wormhole. Another disturbing (or

intriguing, depending on one’s point of view) property of these wormholes is the possibility

of transforming them into time machines for backward time travel [5,6] and thereby, per-

haps, for causality violation. Whether such wormholes are actually allowed by the laws of

physics is currently unknown. However, recent research by Hawking [7] and others [8] in-

dicates that it is very likely that nature employs a “Chronology Protection Agency” which

prevents the formation of closed timelike curves. The method of enforcement appears to

be the divergences in vacuum expectation values of the stress-energy tensor of test fields

which accompany the advent of any self-intersecting null geodesics. It appears that this

behavior is generic with the formation of closed timelike curves [7,8]. At this point it is not

clear whether these results imply that traversable wormholes cannot exist at all or that

nature just does not permit their conversion into time machines.

It has been known for some time that quantum field theory allows local violations of

the WEC [9] in the form of locally negative energy densities and fluxes, the most notable

example being the Casimir Effect [10]. A major unresolved issue is whether quantum field

theory permits the macroscopic effects of negative energy required to maintain traversable

wormholes against collapse. Wald and Yurtsever [11] have recently shown that the AWEC

condition holds for massless scalar fields in a wide range of spacetimes, but that it appar-

ently does not hold in an arbitrary curved four-dimensional spacetime. It is possible that

although violations of the WEC (or AWEC) might be allowed, the magnitude and du-

ration of these violations may be limited by uncertainty principle-type inequalities which

could render gross macroscopic effects of negative energy unobservable. This appears to

be the case for negative energy fluxes due to quantum coherence effects in flat spacetime

[12]. Such quantum inequalities also appear to prevent the unambiguous observation of

violations of cosmic censorship in the attempt to produce a naked singularity from an

extreme Reissner-Nordstrom black hole, in both two and four dimensions [13]. Quantum

inequalities also constrain the magnitude and duration of the negative energy flux seen

by an observer freely falling into an evaporating two-dimensional Schwarzschild black hole

[14].
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Several equally important, though much less explored, questions are: A) Do the laws

of physics permit the topology change required to create the wormhole in the first place?

In classical general relativity, such topology change must be accompanied by the creation

of closed timelike curves [7,15]. Also, at least some topology change issues may be related

to energy conditions [16]. B) Do the laws of physics permit submicroscopic Lorentzian

wormholes (e.g. on the Planck scale [17].)? It may be that wormhole formation, although

possibly prohibited on the classical level, might be allowed quantum-mechanically. If

so, then: C) Are there processes, either natural or artificial, which could lead to their

enlargement to classical size? The present paper will attempt to address one aspect of the

last question.

MT suggest that, “One can imagine an advanced civilization pulling a wormhole out

of the quantum foam and enlarging it to classical size.” This would seem to be, at best,

wishful thinking. However, consider the following scenario. Suppose that a submicroscopic

MT-type wormhole could form in the very early universe via, say, a quantum fluctuation

(the nature of which we will leave conveniently vague). Is it possible that subsequent infla-

tion of the universe, if it occurs, could enlarge the wormhole to classical size? Or perhaps it

might be possible to artificially enlarge a tiny wormhole by imbedding it in a false vacuum

bubble, as in the “creation of a universe in the laboratory” scenario [18]. The inflation

of quantum fluctuations of a scalar field has previously been invoked as a mechanism for

providing the seeds of galaxy formation [19]. Basu et al.[20] have examined the nucleation

and evolution of topological defects during inflation. Mallett [21] has modeled the effects

of inflation on the evaporation of a black hole using a Vaidya metric imbedded in a deSitter

background. His results suggest that inflation depresses the rate of black hole evaporation.

Sato et al. [22] have studied the formation of a Schwarzschild-deSitter wormhole in an

inflationary universe. More recently, Kim [23] has constructed a traversable wormhole so-

lution by gluing together two Schwarzschild-deSitter metrics across a δ-function boundary

layer, following the methods of Visser [24]. Hochberg [25] has used a similar technique to

construct Lorentzian wormhole solutions in higher derivative gravity theories. Hochberg

and Kephart [26] have argued that gravitational squeezing of the vacuum might provide a

natural mechanism for the production of the negative energy densities required for worm-

hole support. However, recent work of Kuo and Ford [27] indicates that many states of

quantized fields which involve negative energy densities are accompanied by large fluctua-

tions in the expectation value of the stress-energy tensor. For such states the semiclassical

theory of gravity may not be a good approximation. The states they examined included

squeezed states and the Casimir vacuum state.
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The outline of the present paper is as follows. In Sec.II, a new class of metrics is

presented which represents a Lorentzian wormhole imbedded in a deSitter inflationary

background. The imbedding is quite “natural” in that it does not involve “thin-shells” or

δ-function “transition layers”. The stress-energy tensor of the false vacuum for deSitter

space barely satisfies the weak energy condition, since the energy density is exactly equal

to minus the pressure. So these models couple “exotic” (i.e., energy-condition violating)

to “near-exotic” matter, in the terminology of MT. In the limit of vanishing cosmological

constant, the metric reduces to the static MT traversable wormhole. It is demonstrated

that both the throat and the proper length of the wormhole inflate. The resulting stress-

energy tensor is constructed by plugging the metric into the Einstein equations. (Although

it is possible that such a metric might represent a wormhole which was “caught” in an

inflationary transition, to definitively show this one would need to solve the opposite

problem. That is, one would have to come up with a physically plausible stress-energy

tensor and solve the Einstein equations to find the metric, and then show that the resulting

solution had the desired wormhole characteristics. This is a much more difficult problem

than the one treated here). The properties of our metrics are discussed in Sec.III. We

use the same metric and curvature conventions as MT [1], and we work in units where

G = c = 1.
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II. A MORRIS-THORNE WORMHOLE IN AN INFLATING BACKGROUND

A. A Review of Static Morris-Thorne Wormholes

To make this paper relatively self-contained, we will review the results of MT [1]. The

metric for a general MT traversable wormhole is given by

ds2 = −e2Φ(r)dt2 +
dr2

(1 − b(r)/r)
+ r2(dθ2 + sin2θ dφ2) , (2.1)

where the two adjustable functions b(r) and Φ(r) are referred to as the “shape function”

and the “redshift function”, respectively. The shape function b(r) controls the shape of

the wormhole as viewed, for example, in an embedding diagram. The metric Eq. (2.1) is

spherically symmetric and static. The geometric significance of the radial coordinate r is

that the circumference of a circle centered on the throat of the wormhole is given by 2πr.

The coordinate r is nonmonotonic in that it decreases from +∞ to a minimum value bo,

representing the location of the throat of the wormhole, and then it increases from bo to

+∞. This behavior of the radial coordinate reflects the fact that the wormhole connects

two separate external “universes” (or two regions of the same universe). At the throat,

defined by r = b = bo, there is a coordinate singularity where the metric coefficient grr

becomes divergent, but the radial proper distance

l(r) = ±

∫ r

bo

dr

(1 − b(r)/r)1/2
(2.2)

must be required to be finite everywhere. At the throat l = 0, while l < 0 on the “left”

side of the throat and l > 0 on the “right” side. For the wormhole to be traversable it

must have no horizons, which implies that gtt = −e2Φ(r) must never be allowed to vanish.

This condition in turn imposes the constraint that Φ(r) must be finite everywhere.

To construct an embedding diagram [1,28] of the wormhole one considers the geometry

of a t = const. slice. Using the spherical symmetry, we can set θ = π/2 (an “equatorial”

slice). The metric on the resulting two-surface is

ds2 =
dr2

(1 − b(r)/r)
+ r2dφ2 . (2.3)

The three-dimensional Euclidean embedding space metric can be written as

ds2 = dz2 + dr2 + r2dφ2 . (2.4)
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Since the embedded surface is axially symmetric, it can be described by z = z(r), sometimes

called the “lift function” (see [1,28]). The metric on the embedded surface can then be

expressed as

ds2 =

[

1 +

(

dz

dr

)2
]

dr2 + r2dφ2 . (2.5)

Equation (2.5) will be the same as Eq. (2.4) if we identify the r, φ coordinates of the

embedding space with those of the wormhole spacetime, and also require:

dz

dr
= ±

(

r

b(r)
− 1

)−1/2

. (2.6)

A graph of z(r) yields the characteristic wormhole pictures found in [1,28]. For the space

to be asymptotically flat far from the throat, MT require that dz/dr → 0 as l → ±∞, i.e.,

b/r → 0 as l → ±∞. In order for this condition to be satisfied, the wormhole must flare

outward near the throat, i.e.,
d2r(z)

dz2
> 0 , (2.7)

at or near the throat. Therefore

d 2r(z)

dz2
=

b − b′r

2b2
> 0 , (2.8)

at or near the throat, r = b = bo, where the prime denotes differentiation with respect to

r.

MT define an “exoticity function”:

ζ ≡
τ − ρ

|ρ|
=

b/r − b′ − 2(r − b)Φ′

|b′|
, (2.9)

where ρ and τ are the energy density and radial tension, respectively, as measured by static

observers in an orthonormal frame. MT show that Eq. (2.9) can be written as

ζ =
2b2

r|b′|

(

d2r(z)

dz2

)

−
2(r − b)Φ′

|b′|
, (2.10)

and argue (see Sec.III.F2 of MT) that Eq. (2.10) reduces to

ζo =
τo − ρo

|ρo|
> 0 , (2.11)

at or near r = b = bo.
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The general strategy is then to choose Φ(r) and b(r) to get a “nice” wormhole, and to

compute the resulting stress-energy tensor components by plugging Φ, b into the Einstein

equations. One can show quite generally [1,5] that the resulting stress-energy tensor must

violate all known energy conditions, including both the WEC and AWEC. It is known that

quantum fields can violate the WEC [9]. Whether or not the laws of quantum field theory

permit violations of AWEC large enough to support a macroscopic (or microscopic, for

that matter) traversable wormhole is presently unknown [11].

One class of particularly simple solutions considered by MT are the so-called “zero-

tidal-force” solutions, corresponding to the choice b = b(r), Φ(r) = 0. The choice of

Φ = 0 yields zero tidal force as seen by stationary observers. We write the metric for later

reference as

ds2 = −dt2 +
dr2

(1 − b(r)/r)
+ r2(dθ2 + sin2θ dφ2) . (2.12)

The energy density ρ(r), radial tension per unit area τ(r), and lateral pressure p(r) for

this class of wormholes as seen by static observers in an orthonormal frame are given by

Tt̂t̂ = ρ(r) =
b′(r)

8πr2
(2.13)

−Tr̂r̂ = τ(r) =
b(r)

8πr3
(2.14)

Tθ̂θ̂ = Tφ̂φ̂ = p(r) =
b(r) − b′r

16πr3
. (2.15)

Two examples of this class of wormholes are the following. The first is given by:

b(r) =
bo

2

r
, Φ(r) = 0 . (2.16)

This corresponds to

z(r) = bocosh
−1

(

r

bo

)

, (2.17)

which has the shape of a catenary, i.e.,

dz

dr
=

bo
√

r2 − bo
2

. (2.18)

The wormhole material is everywhere exotic, i.e., ζ > 0 everywhere. It extends outward

from the throat, with ρ, τ , and p asymptoting to zero as l = ±∞.
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The second example corresponds to the confinement of the exotic matter to an arbi-

trarily small region around the throat. MT call this an “absurdly benign” wormhole. It is

given by the choice:

b(r) =







bo[1 − (r − bo)/ao]
2 , Φ(r) = 0 for bo ≤ r ≤ bo + ao,

b = Φ = 0 for r ≥ bo + ao.

(2.19)

For bo < r < bo + ao,

ρ(r) =
[

(−bo/ao) /(4πr2)
]

[1 − (r − bo)/ao] < 0 (2.20)

τ(r) = bo [1 − (r − bo)/ao]
2
/(8πr3) (2.21)

p(r) =
1

2
(τ − ρ) . (2.22)

For r ≥ bo + ao, the spacetime is Minkowski, and ρ = τ = p = 0.

B. The Φ(r) 6= 0 Inflating Wormholes

A simple generalization of the original MT wormhole metrics, characterized by Eq.

(2.1), to a time-dependent inflationary background is:

ds2 = −e2Φ(r)dt2 + e2χt

[

dr2

(1 − b(r)/r)
+ r2(dθ2 + sin2θ dφ2)

]

, (2.23)

Here we have simply multiplied the spatial part of the metric Eq. (2.1), by a deSitter scale

factor e2χt, where χ =
√

Λ/3 and Λ is the cosmological constant [29]. The coordinates

r, θ, φ are chosen to have the same geometrical interpretation as before. In particular,

circles of constant r are centered on the throat of the wormhole. Our coordinate system is

chosen to be “co-moving” with the wormhole geometry in the sense that the throat of the

wormhole is always located at r = b = bo for all t. (Of course, this does not mean that two

points at different (constant) values of r, θ, φ have constant proper distance separation.)

For Φ(r) = b(r) = 0, our metric reduces to a flat deSitter metric; while for χ = 0, it

becomes the static wormhole metric Eq. (2.1). We may let Φ(r) → 0, b/r → 0 as r → ∞,

so that the spacetime is asymptotically deSitter or we may choose to let Φ(r), b(r) go to

zero at some finite value of r, outside of which the metric is deSitter. The latter (together

with a few other conditions) would correspond to a cutoff of the wormhole material at

some fixed radius. Examples of each of these choices are given by Eqs. (2.16-2.18) and
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Eqs. (2.19-2.22), respectively. However, our scheme should work for any of the original

MT metrics. As before, we also demand that Φ(r) be everywhere finite, so that the only

horizons present are cosmological. The spacetime described by Eq. (2.23), unlike the usual

flat deSitter spacetime, is inhomogeneous due to the presence of the wormhole.

Our primary goal in this investigation is to use inflation to enlarge an initially small

(possibly submicroscopic) wormhole. We choose Φ(r) and b(r) to give a reasonable worm-

hole at t = 0, which we assume to be the onset of inflation. To see that the wormhole

expands in size, consider the proper circumference c of the wormhole throat, r = b = bo,

for θ = π/2, at any time t = const.:

c =

∫ 2π

0

eχt bo dφ = eχt (2πbo) . (2.24)

This is simply eχt times the initial circumference. The radial proper length through the

wormhole between any two pts. A and B at any t = const. is similarly given by:

l(t) = ±eχt

∫ rB

rA

dr

(1 − b(r)/r)1/2
, (2.25)

which is just eχt times the initial radial proper separation. Thus we see that both the

size of the throat and the radial proper distance between the wormhole mouths increase

exponentially with time.

To see that the “wormhole” form of the metric is preserved with time, let us embed a

t = const., θ = π/2 slice of the spacetime given by Eq. (2.23) in a flat 3D Euclidean space

with metric:

ds2 = dz̄2 + dr̄2 + r̄2 dφ2 . (2.26)

The metric on our slice is:

ds2 =
e2χt dr2

(1 − b(r)/r)
+ e2χt r2 dφ2 . (2.27)

Comparing the coefficients of dφ2, we have

r̄ = eχt r|t=const. (2.28)

dr̄2 = e2χt dr2|t=const. (2.29)

With respect to the z̄, r̄, φ coordinates, the “wormhole” form of the metric will be preserved

if the metric on the embedded slice has the form:

ds2 =
dr̄2

(1 − b̄(r̄)/r̄)
+ r̄2dφ2 , (2.30)
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where b̄(r̄) has a minimum at some b̄(r̄o) = b̄o = r̄o. We can rewrite Eq. (2.27) in the form

Eq. (2.30) by using Eqs. (2.28-9) and

b̄(r̄) = eχt b(r). (2.31)

In particular, one can easily show that Eq. (2.31) is satisfied for the specific choices of

b(r) given by Eqs. (2.16) and (2.19) by rewriting the right-hand sides of these equations

in terms of r̄ and using Eq. (2.28). The inflated wormhole will have the same overall size

and shape relative to the z̄, r̄, φ coordinate system, as the initial wormhole had relative

to the initial z, r, φ embedding space coordinate system. This is because the embedding

scheme we have presented corresponds to an embedding space (or more properly, a series

of embedding spaces, each corresponding to a particular value of t = const.) whose z, r

coordinates “scale” with time. To see this, we can follow the embedding procedure outlined

in Eqs. (2.4-2.6), but using Eqs. (2.26) and (2.30). It is readily apparent that

dz̄

dr̄
= ±

(

r̄

b̄(r̄)
− 1

)−1/2

=
dz

dr
, (2.32)

where we have used Eqs. (2.28), (2.29), and (2.31). Eq. (2.32) implies

z̄(r̄) = ±

∫

dr̄

(r̄/b̄(r̄) − 1)1/2
= ±eχt

∫

dr

(r/b(r)− 1)1/2
= ±eχt z(r) . (2.33)

Therefore, we see that the relation between our embedding space at any time t and the

initial embedding space at t = 0 is, from Eqs. (2.29) and (2.33):

ds2 = dz̄2 + dr̄2 + r̄2 dφ2 = e2χt [dz2 + dr2 + r2dφ2] . (2.34)

It is quite important to keep in mind (especially when taking derivatives) that Eqs.

(2.28-9) do not represent a “coordinate transformation”, but rather a “rescaling” of the r-

coordinate on each t = const. slice. Relative to the z̄, r̄, φ coordinate system the wormhole

will always remain the same size; the scaling of the embedding space compensates for the

expansion of the wormhole. Of course, the wormhole will change size relative to the initial

t = 0 embedding space.

If we write the analog of the “flareout condition”, Eq. (2.7), for the expanded worm-

hole we have
d 2r̄(z̄)

dz̄2
> 0 , (2.35)
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at or near the throat. From Eqs. (2.28), (2.29), (2.31), and (2.32) it follows that

d 2r̄(z̄)

dz̄2
= e−χt

(

b − b′r

2b2

)

= e−χt

(

d 2r(z)

dz2

)

> 0 , (2.36)

at or near the throat. Rewriting the right-hand side of Eq. (2.36) relative to the barred

coordinates, we obtain
d 2r̄(z̄)

dz̄2
=

(

b̄ − b̄′r̄

2b̄2

)

> 0 , (2.37)

at or near the throat, where we have used Eqs. (2.28), (2.31), and

b̄′(r̄) =
db̄

dr̄
= b′(r) =

db

dr
. (2.38)

We observe that relative to the barred coordinates, the “flareout condition” Eq. (2.37), has

the same form as that for the static wormhole. With respect to the unbarred coordinates,

the flareout condition Eq. (2.36), appears as though it might be harder to satisfy as time

goes on because of the decaying exponential factor. However, this is due to the fact that as

the wormhole inflates, its throat size and proper length inflate along with the surrounding

space. It therefore necessarily needs to “flare outward” less and less at its throat as the

two external spaces connected by the wormhole move farther apart (again, relative to the

initial “t = 0” embedding space). This behavior is confirmed in an animated “toy” model

of an inflating wormhole produced with Mathematica [30], where b(r) is given by Eq. (2.16)

[31].

Let us now examine the stress-energy tensor that gives rise to the wormhole described

by Eq. (2.23). First, switch to a set of orthonormal basis vectors defined by

et̂ = e−Φ et,

er̂ = e−χt (1 − b/r)1/2 er,

eθ̂ = e−χt r−1 eθ,

eφ̂ = e−χt (r sinθ)−1 eφ.

(2.39)

This basis represents the proper reference frame of a set of observers who always remain

at rest at constant r, θ, φ. The Einstein field equations will be written in the form

Gµ̂ν̂ = Rµ̂ν̂ −
1

2
gµ̂ν̂R = 8πTµ̂ν̂ , (2.40)
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so that any “cosmological constant” terms will be incorporated as part of the stress-energy

tensor Tµ̂ν̂ . The components of Tµ̂ν̂ are

Tt̂t̂ = ρ(r, t) =
1

8π

[

3χ2 e−2Φ + e−2χt b′

r2

]

(2.41)

Tr̂r̂ = −τ(r, t) =
1

8π

[

−3χ2 e−2Φ − e−2χt

[

b

r3
−

2Φ′

r

(

1 −
b

r

)]]

(2.42)

Tt̂r̂ = −f(r, t) =
1

8π

[

2e−Φ−χt

(

1 −
b

r

)1/2

χ Φ′

]

(2.43)

Tθ̂θ̂ = Tφ̂φ̂ = p(r, t)

=
1

8π

[

−3χ2 e−2Φ + e−2χt

[

1

2

(

b

r3
−

b′

r2

)

+
Φ′

r

(

1 −
b

2r
−

b′

2

)

+

(

1 −
b

r

)

[Φ′′ + (Φ′)2]

]]

. (2.44)

The quantities ρ, τ , f , and p are respectively: the mass-energy density, radial tension per

unit area, energy flux in the (outward) radial direction, and lateral pressures as measured

by observers stationed at constant r, θ, φ. Note from Eq. (2.43) that the flux vanishes at

the wormhole throat, as it must by symmetry. If we let Φ(r) → 0, b/r → 0 as r → ∞,

the stress-energy tensor components asymptotically assume their deSitter forms, i.e.,

Tt̂t̂ = −Tr̂r̂ = −Tθ̂θ̂ = −Tφ̂φ̂ = 3χ2. Alternatively, we may wish to cutoff the wormhole

material at some fixed radius, r = R. A sufficient condition for doing this would be to

let Φ(r) = Φ′ = Φ′′ = b = b′ = 0 for r ≥ R. For completeness, the Riemann curvature

tensor components are also included in an appendix. Note that all the stress-energy and

curvature components are finite for all t and r. For χ = 0, our expressions reduce to those

of MT [1]. (Note the correction of a sign error in the (Φ′ b/2r2) term of Gθ̂θ̂ in their

Eq. (12).)

C. Simple Examples: the Φ(r) = 0 Cases

A particularly simple example of an inflating wormhole is obtained by setting Φ(r) = 0

in Eq. (2.23):

ds2 = −dt2 + e2χt

[

dr2

(1 − b(r)/r)
+ r2(dθ2 + sin2θ dφ2)

]

. (2.45)
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The stress-energy tensor components in an orthonormal frame (Eq. (2.39) with Φ = 0)

become

Tt̂t̂ = ρ(r, t) =
1

8π

[

3χ2 + e−2χt b′

r2

]

(2.46)

Tr̂r̂ = −τ(r, t) =
1

8π

[

−3χ2 − e−2χt

(

b

r3

)]

(2.47)

Tt̂r̂ = −f(r, t) = 0 (2.48)

Tθ̂θ̂ = Tφ̂φ̂ = p(r, t) =
1

8π

[

−3χ2 +
e−2χt

2

(

b

r3
−

b′

r2

)]

. (2.49)

The Riemann curvature tensor components for this metric are also included in the ap-

pendix. Note that the stress-energy tensor and Riemann tensor components all approach

their deSitter space values for large t. (The same is true for the expressions of these quan-

tities associated with the metric Eq. (2.23), modulo some multiplicative factors of e−Φ,

which would go to 1 outside the “wormhole” part of the spacetime, e.g., at large r.) When

χ = 0, our metric reduces to that of a static “zero-tidal-force” wormhole, Eq. (2.12).
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III. PROPERTIES OF THE SOLUTIONS AND DISCUSSION

A noticeable difference between the stress-energy tensors associated with the Φ(r) 6= 0

versus the Φ = 0 wormholes is the presence of a flux term, given by Eq. (2.43). To

understand this, we must clarify the difference between two “natural” coordinate systems

associated with the wormhole. The first can be thought of as the rest frame of the wormhole

geometry, i.e., an observer at rest in this frame is at constant r, θ, φ. The second can be

thought of as the rest frame of the wormhole material. In the absence of a particulate

model for the wormhole material, the best we can do is to define such a rest frame in terms

of the properties of the stress-energy tensor. More specifically, we can define the rest frame

of the wormhole material as the one in which an observer co-moving with the material sees

zero energy flux. From Eq. (2.43) we see that for Φ(r) 6= 0, the wormhole material is not

at rest in the r, θ, φ coordinate system. For the Φ(r) = 0 metrics given by Eq. (2.45), the

two coordinate systems coincide.

Let Uµ = dxµ/dτ = (U t, 0, 0, 0) = (e−Φ(r), 0, 0, 0) be the four-velocity of an ob-

server who is at rest with respect to the r, θ, φ coordinate system. The observer’s four-

acceleration is

aµ =
DUµ

Dτ

= Uµ
; ν Uν

= (Uµ
, ν + Γµ

βν Uβ) Uν , (3.1)

which for the metric Eq. (2.23) gives the components

at = 0

ar = Γr
tt

(

dt

dτ

)2

= e−2χt Φ′ (1 − b/r) . (3.2)

From the geodesic equation, a radially moving test particle which is initially at rest has

the equation of motion

d 2r

dτ2
= −Γr

tt

(

dt

dτ

)2

= −ar . (3.3)

Therefore, we see that ar is the radial component of proper acceleration that an observer

must maintain in order to remain at rest at constant r, θ, φ. From Eq. (3.3) it follows

that for Φ(r) 6= 0 wormholes (whether static or inflating), such observers do not move
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geodesically (except at the throat), whereas for Φ(r) = 0 wormholes, they do. In the

Φ(r) 6= 0 case, for observers at fixed r, θ, φ:

∂

∂r

(

dτ

dt

)

= Φ′ eΦ(r) . (3.4)

Eq. (3.4) can be thought of as the “radial gradient of the flow of proper time with respect

to coordinate time”. Note that the flux component of the stress-energy tensor, Eq. (2.43),

goes like χ Φ′. It therefore depends both on the time-dependence of the spatial part of the

metric and on the “radial gradient of proper time flow”.

A wormhole will be called “attractive” if ar > 0 (observers must maintain an outward-

directed radial acceleration to keep from being pulled into the wormhole), and “repulsive”

if ar < 0 (observers must maintain an inward-directed radial acceleration to avoid being

pushed away from the wormhole). For ar = 0, the wormhole is neither attractive nor

repulsive. The sign of the energy flux depends on the sign of Φ′, or equivalently on the

sign of ar. Since the flux f = −Tt̂r̂, then from Eq. (2.43) we see that if the wormhole is

attractive, there is a negative energy flow out of it (or equivalently, a positive energy flow

into it); if it is repulsive, there is a negative energy flow into it (positive energy flow out of

it). In the case where the wormhole material is cut off at a finite radius r = R, the energy

flux vanishes at both r = R and r = b = bo, though not necessarily in between. For this

situation, we might think of the flux as being due to a redistribution of energy within the

wormhole caused by its expansion.

The exoticity function, Eq. (2.9), of MT can be written:

ζ =
−Tµ̂ν̂ W µ̂ W ν̂

|Tt̂t̂|
, (3.5)

where W µ̂ = (W t̂, W r̂, 0, 0) = (1,±1, 0, 0) is a radial outgoing (ingoing) null vector. This

condition is, in some sense, a measure of the degree to which the wormhole material violates

the WEC. In our case,

ζ =
(τ − ρ ∓ f)

|ρ|
. (3.6)

From Eqs. (2.41-3), it can be shown that

Tµ̂ν̂ W µ̂ W ν̂ =
e−2χt

8π

[(

b′

r2
−

b

r3

)

−
2Φ′

r

(

1 −
b

r

)]

±
e−χt

4π

[(

1 −
b

r

)1/2

χ Φ′ e−Φ

]

. (3.7)
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For Φ(r) = 0, Eq. (3.6) reduces to

Tµ̂ν̂ W µ̂ W ν̂ =
e−2χt

8π

(

b′

r2
−

b

r3

)

. (3.8)

Using Eq. (3.6), (3.7), and (2.8), the exoticity function at any radius and time can be

written as

ζ =

e−2χt

[

(2b2/r3)(d 2r(z)/dz2) + (2Φ′/r) (1− b/r)

]

∣

∣

∣

∣

3χ2 e−2Φ + e−2χt (b′/r2)

∣

∣

∣

∣

∓

2e−χt

[

(1 − b/r)1/2 χ Φ′ e−Φ

]

∣

∣

∣

∣

3χ2 e−2Φ + e−2χt (b′/r2)

∣

∣

∣

∣

. (3.9)

Comparing Eq. (2.10) with Eq. (3.9), we see that the relationship between the

exoticity function and the flareout condition does not seem to be quite as simple as that

for the static wormhole. The interpretation of Eq. (3.9) is complicated by the presence

of the χ2 term in the denominator, which could have the opposite sign from the b′ term

when the sign of the latter is negative, as well as by the addition of the flux term. If

3χ2 e−2Φ 6= e−2χt (b′/r2) for all t, then from Eq. (2.41), ρ is non-zero and finite. In this

case, the vanishing of terms such as Φ′ (1 − b/r) at the throat and Eq. (2.8) allow us to

write that

ζo > 0 at or near the throat , r = b = bo . (3.10)

If ρ is non-zero and finite for all t, then it can be shown from Eq. (3.9) that the exoticity

at the throat ζo, decays exponentially at large t. This is not terribly surprising in light

of our earlier discussion regarding the “flareout” behavior of the wormhole throat during

inflation.

Rather than examining the exoticity function, it is much simpler to just look at

the WEC along the null vectors W µ̂ in the limit r → bo. At the throat this condi-

tion, Tµ̂ν̂ W µ̂ W ν̂ ≥ 0, simply reduces to the right-hand side of Eq. (3.8) evaluated at

r = b = bo, for both the Φ 6= 0 and Φ = 0 cases. The term in parentheses is just the value

of this expression at t = 0, which is the same as that for the static wormhole and thus

must be negative, from the original argument of MT. Therefore, the violation of the WEC

at the throat of the wormhole decreases exponentially with time.
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To understand this behavior, one can give the following heuristic argument. Consider

the simple static Φ = 0 wormhole example given by Eqs. (2.13-2.16), for different throat

sizes. For such a wormhole, the negative energy density, radial tension per unit area, and

lateral pressure at the throat scale like 1/bo
2. They decrease in magnitude as the size of

the throat increases. (Note however, that for this wormhole the exoticity ζo is independent

of throat size.) This makes sense because the smaller the wormhole throat, the smaller its

radius of curvature and hence the larger the curvature. The larger the curvature, the more

“prone” is the wormhole to gravitational collapse, and therefore the larger the negative

energy density required to hold it open. However, the total amount of negative energy

near the throat scales like ρV ∼ (1/bo
2 × bo

3) ∼ bo, and therefore must increase as the

throat size increases.

In general, due to the rapid expansion of the surrounding space, the two mouths of

the wormhole will quickly lose causal contact with one another, i.e., they will move outside

of each other’s cosmological horizon. Each mouth might re-enter the other’s horizon after

inflation [32]. If the mouths were to remain in causal contact throughout the duration of

the inflationary period, then there would be a constraint on the initial size of the wormhole.

To estimate this, we will use the simple Φ(r) = 0 wormhole metric, Eq. (2.45). Consider

two observers stationed on opposite sides of the wormhole and separated by an initial

radial proper distance at t = 0 of lo. Let l(T ) be their separation at the end of inflation,

t = T . The proper distance, lH , of each observer from his/her horizon is lH ∼ 1/χ. If we

require that this distance be less than l(T ), then

lo <
e−χT

χ
. (3.11)

For a typical inflationary scenario (see for example, [33]), χ−1 ∼ 10−34 sec ∼ 10−23 cm ,

χT ∼ 100 , which gives lo < 10−67 cm << lP ∼ 10−33 cm . Since the Planck length, lP , is

usually regarded as the smallest distance scale which makes physical sense, it seems that

the condition Eq. (3.11) cannot be satisfied (at least in the usual inflationary scenarios).

The same parameters yield an increase in size of the wormhole by a factor of ∼ 1043. A

initially Planck-sized wormhole would be enlarged to a size of ∼ 1010 cm ∼ 1 R⊙ after

inflation.

It is also possible that the wormhole will continue to be enlarged by the subsequent

FRW phase of expansion. One could perform a similar analysis to ours by replacing the

deSitter scale factor in Eq. (2.23) by an FRW scale factor a(t). A naive estimate yields a

total enlargement of wormhole size which is larger than our present horizon size. However,
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since it is difficult to even say what effects the reheating at the end of inflation will have

on the wormhole, we will not pursue this possibility further.

Since the two mouths of the wormhole lose causal contact during inflation, then pre-

sumably issues of traversability will arise only after inflation. In our discussion we have

therefore avoided the enforcement of additional “usability criteria”, i.e., requirements pro-

posed by MT which are designed to make wormhole traversal comfortable for human

travellers. Also, a wormhole need not necessarily be traversable by human beings for it

to be useful. Indeed, the more troubling characteristics of wormholes, such as their use

for possible causality violation, should be realizable if it is possible to just send signals

through them, in the form of light rays or particles. In passing, we again note that the

Riemann curvature tensor components, given in the appendix, are well-behaved for all r

and t (e.g., no “exponentially growing” tidal forces at the throat).

One might think that since two-way passage is practical only after inflation, the ap-

plication of the present scenario to small ordinary Schwarzschild or Reissner-Nordstrom

wormholes might yield large wormholes which could then later be made traversable. How-

ever, these wormholes have (non-cosmological) horizons which tend to make them collapse

very rapidly- an affliction which would probably be exacerbated by the positive energy

released during the decay of the false vacuum. Assuming that one could circumvent the

latter problem, then perhaps such a wormhole might be stabilized by the injection of a

flux of negative energy. Unfortunately, the magnitude and duration of such fluxes would

most likely be limited by “quantum-inequality” type restrictions similar to those found to

hold for negative fluxes injected into an extreme Reissner-Nordstrom black hole [13]. The

same would likely be true for the pair-produced extreme magnetically charged wormholes

conjectured by Garfinkle and Strominger [34].

A nontrivial problem is the maintenance of the wormhole during and after the decay

of the false vacuum. We saw earlier that although large (static) wormholes with ρ < 0

required a smaller negative energy density for maintenance than small ones, the total

amount of negative energy required should increase with increasing throat size. During

inflation the wormhole throat is greatly stretched in size due to the rapid cosmological

expansion. However, note that in Eqs. (2.41)-(2.44), the “false vacuum terms” remain

constant with time while the “exotic wormhole material terms” decay exponentially with

time. For example, in Eq. (2.41) the first term, which represents the energy density of the

false vacuum, remains constant (at constant r) while the second term, representing the

“exotic” energy density of the wormhole, decreases with time. Consider the case where the

latter is negative. Then the total amount of positive energy increases, since the positive

energy density of the false vacuum remains constant as the volume increases. The total
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amount of negative energy decreases because the negative energy density exponentially

decreases while the volume increases. When the false vacuum decays, the exponential

stretching will cease and the positive energy in the false vacuum will be converted into more

conventional forms, such radiation and/or particles. This potentially huge positive energy

might flood the wormhole, triggering a gravitational collapse of the throat. Perhaps such

a fate might be avoided if the two energy densities in Eq. (2.41) are roughly comparable

in magnitude at the end of inflation.

As a simple example, let us first consider the inflating “absurdly benign” wormhole

with Φ and b given by Eq. (2.19). From Eq. (2.46), the energy density at the throat is

ρo ∼ 3χ2 − 2e−2χt (bo ao)
−1

, (3.12)

where ao is the thickness (in r) of the negative energy region near the throat. Let ao = η bo,

where η is some fraction, but require bo < lP , ao < lP . For the two terms in Eq. (3.12) to

be comparable at the end of inflation, t = T :

bo ∼
e−χT

η χ
. (3.13)

which is almost identical to the condition Eq. (3.11). For the inflation parameters given

earlier, we see that Eq. (3.13) also leads to a required initial wormhole size bo << lP .

One fares a little better with the Φ(r) 6= 0 wormhole. From Eq. (2.41), it appears that by

making Φ(bo) large enough it might be possible to suppress the positive χ2 “false vacuum”

term. The energy density at the throat goes like [35]:

ρo ∼ 3χ2 e−2Φ(bo) − (e−2χt / bo
2) , (3.14)

which leads to the condition that

bo ∼ eΦ(bo) e−χT

χ
. (3.15)

For bo ∼ 10−33 cm , Φ(bo) ∼ ln(1034) ∼ 78. This corresponds to a time dilation factor of

(dτ/dt) ∼ 1034, i.e., clocks fixed at r = bo must run ∼ 1034 × faster than clocks outside

the wormhole!

These crude heuristic arguments suggest that in general it will be difficult for the

negative energy density-type terms to overwhelm the false vacuum-type terms. However

it should be mentioned that our simple argument does not take into account the effects of

gravitational energy, so it is not completely clear as to whether wormholes are unlikely to
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survive inflation. Also, the results in this paper represent only one possible generalization

of MT wormholes to time-dependent situations. Even more general solutions might be

obtained by allowing Φ and b in our metrics to be functions of t as well as r [36].

On the other hand, if most of the wormholes in the quantum foam survived inflation,

then the universe might be far more inhomogeneous and topologically complicated than we

observe [37] (unless they all inflated beyond our current horizon). Perhaps the wormholes

were all destroyed by the flood of positive energy released during reheating. It is also

possible that a given wormhole mouth might find itself in a slightly different gravitational

potential from its counterpart. The quantum field-theoretic instabilities associated with

the tendency of such a wormhole to form closed timelike curves [6,7,8] might destroy it.

Perhaps the probability for the existence of a wormhole in the quantum foam that has

the right properties for inflation is extremely low, or perhaps none of the foam inflates

(after all, galaxies in the FRW phase don’t expand). Since we know very little about the

quantum foam (or whether it even exists at all!), these are difficult questions to answer.

(The possibility of artificially enlarging a tiny wormhole by imbedding it in a false vacuum

bubble is currently under investigation.)

Another part of the problem is that one does not know what constitutes a “generic”

wormhole. In classical general relativity, the energy conditions determine the character-

istics of “reasonable” sources. Quantum field theory allows some violation of the energy

conditions, but with our present state of knowledge regarding the extent of these violations,

we cannot yet say which types of wormholes, if any, are physically reasonable.
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Appendix

The following curvature tensor components, as well as some of the stress-energy tensor

components found in the text, were computed using MathTensor [38]. For the metric Eq.

(2.23), the Riemann tensor components are:

Rt̂φ̂t̂φ̂ = −Rφ̂t̂t̂φ̂ = −Rt̂φ̂φ̂t̂ = Rφ̂t̂φ̂t̂

= −χ2 e−2Φ + e−2χt (Φ′/r2) (r − b) (A1)

Rt̂φ̂φ̂r̂ = Rφ̂r̂t̂φ̂ = −Rφ̂t̂φ̂r̂ = −Rt̂φ̂r̂φ̂ = Rφ̂t̂r̂φ̂

= −χ e−χt (1 − b/r)1/2 e−Φ Φ′ (A2)

Rt̂θ̂t̂θ̂ = −Rθ̂t̂t̂θ̂ = −Rt̂θ̂θ̂t̂ = Rθ̂t̂θ̂t̂

= −χ2 e−2Φ + e−2χt (Φ′/r2) (r − b) (A3)

Rt̂θ̂θ̂r̂ = Rθ̂r̂t̂θ̂ = −Rθ̂t̂θ̂r̂ = −Rt̂θ̂r̂θ̂ = Rθ̂t̂r̂θ̂

= −χ e−χt (1 − b/r)1/2 e−Φ Φ′ (A4)

Rt̂r̂t̂r̂ = −Rr̂t̂t̂r̂ = −Rt̂r̂r̂t̂ = Rr̂t̂r̂t̂

= −χ2 e−2Φ + e−2χt (1 − b/r) [Φ′′ + (Φ′2)]

+ (e−2χt/2) Φ′ (b/r2 − b′/r) (A5)

Rθ̂r̂θ̂r̂ = −Rr̂θ̂θ̂r̂ = −Rθ̂r̂r̂θ̂ = Rr̂θ̂r̂θ̂

= χ2 e−2Φ + (e−2χt/2) (b′/r2 − b/r3) (A6)

Rφ̂θ̂φ̂θ̂ = −Rθ̂φ̂φ̂θ̂ = −Rφ̂θ̂θ̂φ̂ = Rθ̂φ̂θ̂φ̂

= χ2 e−2Φ + e−2χt (b/r3) (A7)

Rφ̂r̂φ̂r̂ = −Rr̂φ̂φ̂r̂ = −Rφ̂r̂r̂φ̂ = Rr̂φ̂r̂φ̂

= χ2 e−2Φ + (e−2χt/2) (b′/r2 − b/r3) . (A8)

For the metric Eq. (2.45), the above components reduce to:

Rt̂φ̂t̂φ̂ = −χ2 (A9)

Rt̂θ̂t̂θ̂ = −χ2 (A10)

Rt̂r̂t̂r̂ = −χ2 (A11)

Rθ̂r̂θ̂r̂ = χ2 + (e−2χt/2) (b′/r2 − b/r3) (A12)

Rφ̂θ̂φ̂θ̂ = χ2 + e−2χt (b/r3) (A13)

Rφ̂r̂φ̂r̂ = χ2 + (e−2χt/2) (b′/r2 − b/r3) . (A14)
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