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( 1.



Introduction.



	The object of this paper is the solution of Laplace’s potential equation



� EMBED Equation.2  ��� ,



and of the general differential equation of wave-motions



� EMBED Equation.2  ���  ,



and of other equations derived from these.

	

	In  ( 2,  the general solution of the potential equation is found.

	

	In  ( 3,  a number of results are deduced from this,  chiefly relating to particular solutions of the equation,  and expansions of the general solution in terms of them.

	

	In  ( 4,  the general solution of the differential equation of wave-motions is given.

	

	In  ( 5,  a number of deductions from this general solution is given,  including a theorem to the effect that any solution of this equation can be compounded from simple uniform plane waves,  and an undulatory explanation of the propagation of gravitation.



(  2.



The general solution of the potential equation. 



	We shall first consider the equation



� EMBED Equation.2  ���  ,



which was originally given by Laplace.* 



 

_______________________________________________________________________________

*  M(moire sur la theorie de l’anneau de Saturne,  1787.

	This equation is satisfied by the potential of any distribution of matter which attracts according to the Newtonian Law.  We shall first obtain a general form for potential-functions,  and then shall shew that this form constitutes the general solution of Laplace’s equation.  From the identity



� EMBED Equation.2  ���  ,



we see that the potential at any point  � EMBED Equation.2  ���  of a particle of mass  m,  situated at the point  � EMBED Equation.2  ���  is



� EMBED Equation.2  ���



which,  considered as a function of  x,  y,  z,  is an expression of the type



� EMBED Equation.2  ���  ,



where  f   denotes some function of the two arguments



z + ix cos u+ iy sin u  and  u.



	It follows that the potential of  any number of particles � EMBED Equation.2  ���  situated at the points  � EMBED Equation.2  ���  is an expression of the type



� EMBED Equation.2  ���



or

� EMBED Equation.2  ��� ,



where  f  is a new function of the two arguments



� EMBED Equation.2  ���.



	In this way we see that the potential of any distribution of matter which attracts according to the Newtonian Law can be represented by an expression of the type



� EMBED Equation.2  ��� .



	The question now naturally suggests itself,  whether the most general solution of Laplace’s equation can be represented by an expression of this type.  We shall shew that the answer to this is in the affirmative.



	For let  � EMBED Equation.2  ���  be any solution  (single-valued or many-valued) of the equation



� EMBED Equation.2  ���  ,



Let  � EMBED Equation.2  ���  be some point at which some branch of the function  � EMBED Equation.2  ���  is regular,  then if we write



� EMBED Equation.2  ���



It follows that for all points situated within a finite domain surrounding the point  � EMBED Equation.2  ���,  this branch of the function  V(x,y,z)  can be expanded in an absolutely and uniformly convergent series of the form



� EMBED Equation.2  ���



Substituting this expansion into Laplace’s equation,  which can be written



� EMBED Equation.2  ���  ,



and equating to zero the coefficients of the various powers of  X,  Y,  and  Z,  we may obtain an infinite number of linear relations,  namely



� EMBED Equation.2  ���



between the constants in the expansion.

	There are � EMBED Equation.2  ��� coefficients of the terms of any degree  n  in the expansion of  V;  so that only  � EMBED Equation.2  ���  of the coefficients of terms of degree  n  in the expansion of  V  are really independent.  It follows that the terms of degree  n  in  V  must be a linear combination of  � EMBED Equation.2  ���  linearly independent particular solutions of Laplace’s equation,  which are of degree  n  in  X, Y, Z.

	To find these solutions,  consider the expansion of the quantity



� EMBED Equation.2  ���

as a sum of sines and cosines of multiple  u,  in the form



� EMBED Equation.2  ���

� EMBED Equation.2  ��� .



Now  � EMBED Equation.2  ���  are together characterised by the fact that the highest power of  Z  contained in them is  � EMBED Equation.2  ���  is an even function of  Y,  whereas  � EMBED Equation.2  ���  is an odd function of  Y ;  and hence the  (2n+1)  quantities  � EMBED Equation.2  ��� are linearly independent of each other;  and they are clearly homogeneous polynomials of degree  n  in  X, Y, Z ;  and each of them satisfies Laplace’s equation,  since the quantity   � EMBED Equation.2  ���   does so.  They may therefore be taken as the  (2n+1)  linearly independent solutions of degree  n  of Laplace’s equation.



	Now since by Fourier’s Theorem we have the relations



� EMBED Equation.2  ���



it follows that each of these  (2n+1)  solutions can be expressed in the form



� EMBED Equation.2  ���



and therefore any linear combination of these  (2n+1)  solutions can be expressed in this form.  That is,  the terms of any degree  n  in the expansion of  V  can be expressed in this form;  and therefore  V  itself can be expressed in the form



� EMBED Equation.2  ���

or

� EMBED Equation.2  ��� ,

or

� EMBED Equation.2  ��� ,



since the  � EMBED Equation.2  ���  can be absorbed into the second argument  .



	Now  V  was taken to be any solution of Laplace’s equation,  with no restriction beyond the assumption that some branch of it was at some point a rectangular function --- an assumption which is always tacitly made in the solution of differential equations;  and thus we have the result,  that the general solution of Laplace’s equation 

� EMBED Equation.2  ���  ,

is

� EMBED Equation.2  ��� ,



where f is an arbitrary function of the two arguments  z+ix cos u+iy sin u    and  u.




Moreover,  it is clear from the proof that no generality is lost by supposing that  f  is a periodic function of  u.



	This theorem is the three-dimensional analogue of the theorem that the general solution of the equation



� EMBED Equation.2  ���

is

� EMBED Equation.2  ���



( 3.



Deductions from the Theorem of  ( 2;  Particular Solutions;

expansions of the general solution.



	� EMBED Equation.2  ���  Interpretations of the solution.  We may give to the general solution just obtained a concrete interpretation as follows.

	Since a definite integral can be regarded as the limit of a sum,  we can regard  V  as the sum of an infinite number of terms,  each of the type



� EMBED Equation.2  ���



each term corresponding to some value of  � EMBED Equation.2  ��� .



	But this term is a solution of the equation



� EMBED Equation.2  ��� ,

where

� EMBED Equation.2  ���



so that  � EMBED Equation.2  ���  represent coordinates derived from  (x,y,z)  by a rotation of the axes through and angle � EMBED Equation.2  ��� round the axis of  z.  



	Thus we see that the general solution of Laplace’s equation can be regarded as the sum of an infinite number of elementary constituents  � EMBED Equation.2  ��� ,  each constituent being the solution of an equation



� EMBED Equation.2  ���  ,



and the axes  � EMBED Equation.2  ���  being derived from the axes  (x,y,z)  by a simple rotation round the axis of  z.







	� EMBED Equation.2  ���  The particular solution in terms of  Legendre functions.  It is interesting to see how the well-known particular solutions of Laplace’s equation in terms of Legendre functions can be obtained as a case of the solution given in  ( 2.



	The particular solutions in question are of the form



� EMBED Equation.2  ���



where  � EMBED Equation.2  ���  are the polar coordinates corresponding to the rectangular coordinates  (x, y, z),  and where



� EMBED Equation.2  ���  .



Now the function  � EMBED Equation.2  ���  can be expressed by the integral



� EMBED Equation.2  ��� ,



and thus we have



� EMBED Equation.2  ��� ,





� EMBED Equation.2  ���



� EMBED Equation.2  ��� .



	We see therefore that the solution  � EMBED Equation.2  ��� is a numerical multiple of



� EMBED Equation.2  ���  .



similarly the solution  � EMBED Equation.2  ��� is a numerical multiple of



� EMBED Equation.2  ���  .



From this it is clear that in order to express any solution





� EMBED Equation.2  ���  



of Laplace’s equation,  as a series of harmonic terms of the form



� EMBED Equation.2  ���  and  � EMBED Equation.2  ���  ,



it is only necessary to expand the function of  f  as a Taylor series with respect to the first argument

 z+ix cos u+iy sin u,  and as a Fourier series with respect to the second argument  u.



	As an example of this procedure,  we shall suppose it required to find the potential of a prolate spheroid in the form



� EMBED Equation.2  ��� ,



and to expand this potential as a series of harmonics.  Let



� EMBED Equation.2  ��� 



be the equation of the surface of the spheroid;  and suppose that it is a homogenous attracting body of mass  M.  To find its potential,  we can make use of the theorem that the potential at external points is the same as that of a rod joining the foci,  of line-density  � EMBED Equation.2  ��� ;  that is,  it is



� EMBED Equation.2  ���  

or

� EMBED Equation.2  ���, 



where  B  is written for  z+ix cos u+iy sin u.



	Expanding the integrand in ascending powers of  1/B,  we have the potential in the form



� EMBED Equation.2  ��� .



Since

� EMBED Equation.2  ��� ,



this gives the required expansion of the potential of the spheroid in Legendre functions,  namely the series



� EMBED Equation.2  ���  .



This result may be extended to the case of the potential of an ellipsoid with three unequal axes,  by using a formula for the potential of an ellipsoid given by Laguerre. *



� EMBED Equation.2  ���.	The particular solutions of Laplace’s equation which involve Bessel functions.  We shall next shew how the well-known particular solutions of Laplace’s equation in terms of Bessel functions can be obtained as a case of the general solution.  The particular solutions in question are of the form



� EMBED Equation.2  ���  ,



where  k  and  m  are constants,  and  z,  (,  (  are the cylindrical coordinates corresponding to the rectangular coordinates  x,  y,  z,  so that



x = ( cos ( ,    y = ( sin ( .

Now if in the solution

� EMBED Equation.2  ���

we replace  � EMBED Equation.2  ���  by its value



� EMBED Equation.2  ���  ,

we find after a few simple transformations that



� EMBED Equation.2  ��� .



The other solutions which involve  sin m(,  can be similarly expressed:  we see therefore that the solutions



� EMBED Equation.2  ���  and   � EMBED Equation.2  ���  ,



are numerical multiples of



� EMBED Equation.2  ��� .





and

� EMBED Equation.2  ��� .



respectively.  It follows from this that in order to express any solution



� EMBED Equation.2  ��� 



of Laplace’s equation as a sum of terms of the form



� EMBED Equation.2  ���  and   � EMBED Equation.2  ���  ,



it is only necessary to expand the function  f  in terms of the exponentials of its first argument 

 z+ix cos u+iy sin u,  as a fourier series with respect to its second argument  u.



	As an example of the use which may be made of these results,  we shall suppose it required to express the potential-function

� EMBED Equation.2  ���

(where  z  is supposed positive)  as a series of harmonic terms of the type involving Legendre functions:  and also to find a distribution of attracting matter of which this is the potential.  This can be done in the following way.

We have

� EMBED Equation.2  ���



� EMBED Equation.2  ���



� EMBED Equation.2  ���  .



But if  t  be any variable different from zero,  and such that  � EMBED Equation.2  ���,  we have



� EMBED Equation.2  ��� ,



where  
� EMBED Equation.2  
�
�
�
,  are Bernoulli’s numbers.  Therefore,  so long as  z  is positive and  � EMBED Equation.2  ���

i.e,  so long as  z  is positive and  � EMBED Equation.2  ���  we have



� EMBED Equation.2  ���







or

� EMBED Equation.2  ���



and this is the required expansion of  V  as a series of harmonics involving Legendre functions.



	Next,  since



� EMBED Equation.2  ��� ,

we have

� EMBED Equation.2  ��� ,

or



� EMBED Equation.2  ��� ,



and therefore  V  can be regarded as the potential due to a set of attracting masses placed at equal imaginary intervals  2I(.



(  4.



The differential equation  � EMBED Equation.2  ��� .



	We shall next consider the general differential equation of wave motions,



� EMBED Equation.2  ��� ,

where  k  is a constant.



	Writing  kt  for  t,  this becomes



� EMBED Equation.2  ��� ,



which we shall take for the present as the standard form of the equation.



	In order to find the general solution of this equation,  we follow a procedure analogous to that of  ( 2.  Let  V(x, y, z, t)  be any solution  (single-valued or many-valued)  of the equation;  and let � EMBED Equation.2  ���  be a place at which some branch of the function  V  is regular.  Then if we write



� EMBED Equation.2  ���

it will be possible to expand this branch of the function  V  as a power-series of the form



� EMBED Equation.2  ���



which will be absolutely and uniformly convergent for a certain finite domain of values of  X, Y, Z, T.  Substituting this expansion in the differential equation,  which may be written



� EMBED Equation.2  ��� ,



and equating to zero the coefficients of various powers of  X,  Y  and  Z,  we obtain an infinite number of linear relations,  namely

� EMBED Equation.2  ��� ,  etc.,



between the constants in the expansion.  There are  � EMBED Equation.2  ���  of these relations between the � EMBED Equation.2  ���  coefficients of terms of any degree  n  in the expansion of  V;  so that only



� EMBED Equation.2  ���  

or

� EMBED Equation.2  ���



of the coefficients of terms of degree  n  in the expansion of  V  are really independent.  It follows that the terms of degree  n  in  V  must be a linear combination of  � EMBED Equation.2  ���  linearly independent particular solutions of degree  n  in  X, Y, Z, T.  



	To find these solutions,  consider the expansion of the quantity



� EMBED Equation.2  ���  .



If we take the expansion in the form



� EMBED Equation.2  ���  ,

� EMBED Equation.2  ���  ,



we have seen in  ( 2  that  � EMBED Equation.2  ��� ,  are linearly independent functions of  X, Y, Z, T.  Moreover,  � EMBED Equation.2  ���  are of the form  � EMBED Equation.2  ���  polynomial of degree  (n-m)  in  cos u,  and therefore each of them contains  (n-m+1)  independent polynomials in  X, Y, Z, T.  Thus the total number of independent polynomials in  X, Y, Z, T,  in the expansion of  � EMBED Equation.2  ���  in sines and cosines of multiples of  u  and  v,  is  (n+1)+2n+2(n-1)+2(n-2)+ ( +2



or

� EMBED Equation.2  ��� .

Now each of these polynomials must satisfy the equation



� EMBED Equation.2  ��� ,



since the quantity



� EMBED Equation.2  ���  



does so:  and therefore they may be taken as the  � EMBED Equation.2  ���  linearly independent solutions of the equation



� EMBED Equation.2  ��� ,



which are homogeneous of degree  n  in  X, Y, Z, T.  Now by Fourier’s theorem we have



� EMBED Equation.2  ��� ;



and since  � EMBED Equation.2  ���  is of the form



� EMBED Equation.2  ��� ,



where  � EMBED Equation.2  ���  is one of the polynomials in question,  it is clear that  � EMBED Equation.2  ���  can be expressed as a sum of sines or cosines of multiples of  u,  according as  m  is even or odd;  and the coefficient of one of these sines or cosines,  say of  cos su,  is



� EMBED Equation.2  ���.



It follows that each of the polynomials  � EMBED Equation.2  ���  can be expressed in the form



� EMBED Equation.2  ���.



where  f(u)  denotes some periodic function of  u;  that is,  it can be expressed in the form



� EMBED Equation.2  ��� .

It follows from this that each of the  � EMBED Equation.2  ���  polynomial solution of degree  n  can be expressed in the form



� EMBED Equation.2  ��� ,



where  f(u,v)  denotes some periodic function of  u  and  v;  and therefore the terms of  n  in  V  can be expressed in this form.



	The function  V  itself  can therefore be expressed in the form



� EMBED Equation.2  ��� ,



where  f  denotes some function of the three arguments



� EMBED Equation.2  ���;



and  f  may without loss of generality be supposed to be periodic in  u  and  v.



	Now



� EMBED Equation.2  ���;



� EMBED Equation.2  ���  



� EMBED Equation.2  ���  ;



and the termo



� EMBED Equation.2  ���  



can be absorbed into the arguments  u  and  v;  moreover  V  was taken to be any solution of the partial differential equation;  we have,  therefore,  on writing  � EMBED Equation.2  ���  for  t,  the result that the general solution of the partial differential equation of wave-motions,





� EMBED Equation.2  ��� ,

is



� EMBED Equation.2  ��� ,



where  f  is an arbitrary function of the three arguments



� EMBED Equation.2  ��� .





( 5.



Deductions from the general solution of  ( 4.



	� EMBED Equation.2  ���.	The analysis of wave-motions.  We shall now deduce from the general solution thus obtained a result relating the analysis of those phenomena which are represented by solutions of the equation



� EMBED Equation.2  ��� .



If we revert to the fundamental idea of the definite integral as the limit of the sum of an infinite number of terms,  we see that the general solution





� EMBED Equation.2  ��� ,



can be interpreted as meaning that  V  is the sum of an infinite number of terms of the type



� EMBED Equation.2  ��� ,

  

there being one of these terms corresponding to every direction in space given by the direction-cosines



sin u cos v,  sin u sin v,  cos u.



The solution  V  can therefore be regarded as the sum of constituent solutions,  each of the type



� EMBED Equation.2  ��� ,



where the function  F  varies from one direction  (u, v)  to another.



	Now let us fix our attention on one of these constituent solutions  F.  If for some range of values of the quantity





� EMBED Equation.2  ��� ,



the function  F  is finite and continuous,  we can for this range of values express  F  by Fourier’s integral formula in the form



� EMBED Equation.2  ���  ,



where  a  and  b  are the terminals of this range of values;  or supposing the integration with respect to  (  to be performed,



� EMBED Equation.2  ��� ,



where  g(()  denotes some function of  (.



	Now let us again revert to the idea of the definite integral as the limit of a sum.  Then this latter integral integral can be regarded as the sum of an infinite number of terms of the type



� EMBED Equation.2  ��� ,



each term being multiplied by some factor depending on  (.



	The solution  V  can therefore be regarded as constituted by the superposition of terms of this last type.  But a term of this type represents a simple uniform plane wave;  for on transforming the axes so that the new axis of  x  is in the line whose direction-cosines are

sin u cos v,  sin u sin v,  cos u.

the term becomes

� EMBED Equation.2  ��� ,



which represents a single plane wave whose direction of propagation is the new axis of  x.  We see therefore that the general finite solution of the differential equation of wave-motions



� EMBED Equation.2  ��� .

can be analysed into simple plane waves,  represented by terms of the type



F� EMBED Equation.2  ��� .



	It is interesting to observe that Dr. Johnstone Stoney in 1897*  shewed by physical reasoning,  and without any reference to the equation

� EMBED Equation.2  ��� 

that all the disturbance of the luminiferous ether arising from sources of certain kinds can be resolved into trains of plane waves.



	� EMBED Equation.2  ��� .	Solution of the equation

� EMBED Equation.2  ��� .



If a solution  W  of the equation

� EMBED Equation.2  ��� 



be of the form  � EMBED Equation.2  ��� ,  where  V  is a function of  x, y, z  only,  which does not involve  t,  then  V  clearly satisfies the equation

� EMBED Equation.2  ��� .



and therefore,  on reference to the general solution of the wave-motion equation found in  ( 4,  we see that the general solution of the equation



� EMBED Equation.2  ��� 

is

� EMBED Equation.2  ��� .



	� EMBED Equation.2  ���.	Deductions of the known particular solutions of the equation



� EMBED Equation.2  ��� . 

It is known that particular solutions of the equation



� EMBED Equation.2  ��� 



exist,  which are of the form



� EMBED Equation.2  ���



(n=0, 1, 2, ( , n) ,



where  r, (, (  are the polar coordinates corresponding to  x, y, z.  We shall now shew how these may be derived from the general solution of the equation which has just been found.



	For let the general solution be written in the form



� EMBED Equation.2  ��� ,



where  f(u,v) is an arbitrary function of the two arguments  u  and  v,  which may without loss of generality be taken to be periodic in  u  and  v.



	Now let the function  f(u,v)  be expanded in surface-harmonics of  u  and  v,  so that



� EMBED Equation.2  ��� 



where  � EMBED Equation.2  ���  is a surface-harmonic of order  n,  i.e.,  if



� EMBED Equation.2  ���,



are regarded as the co-ordinates of a point in space,  then  � EMBED Equation.2  ���  is a homogeneous polynomial of degree  n  in  (, (, (,  satisfying  Laplace’s equation



� EMBED Equation.2  ��� .



Next,  let the variables be changed by the substitution



					  cos u = cos ( cos (+sin ( sin ( cos v(  ,

				 sin u sin ((-v) = sin ( sin v(  ,

				sin u cos ((-v) = sin ( sin ( - sin ( cos v( cos (  ,



so that  � EMBED Equation.2  ��� are the co-ordinates of the point  ((, (, () referred to new axes,  the line whose direction-cosines are  (sin ( cos (,  sin ( sin (,  cos ()  being taken as the new axis of  z.



	Thus

� EMBED Equation.2  ��� .



But a surface-harmonic of any order  n  remains a surface-harmonic of order  n  under any transformation of axes in which the origin is unchanged;  and therefore  � EMBED Equation.2  ���  is a surface harmonic of order  n  in  (  and  v;  and consequently it can be expanded in the form



� EMBED Equation.2  ���



� EMBED Equation.2  ���  ,



where  � EMBED Equation.2  ���  are functions of  (  and  (.  Substituting this value for  � EMBED Equation.2  ��� in the integral,  and performing the integration with respect to  v(,  we have



� EMBED Equation.2  ���;



and in virtue of the relation*



� EMBED Equation.2  ��� ,



this can be written in the form

� EMBED Equation.2  ���



where  � EMBED Equation.2  ���  denotes some function of  (  and  (.



	Since the surface-harmonics � EMBED Equation.2  ���  were independent of each other,  the functions  � EMBED Equation.2  ���,  will be independent of each other and therefore each of the quantities



� EMBED Equation.2  ���

will be a solution of the equation 



� EMBED Equation.2  ��� .



but on transforming this equation to polar co-ordinates,  and substituting the expression



� EMBED Equation.2  ���



for  V ,  we find that the function  � EMBED Equation.2  ���  must satisfy the differential equation for a surface-harmonic in  (  and  (  of order  n.  It follows that  � EMBED Equation.2  ���  can be expanded in the form



� EMBED Equation.2  ���

� EMBED Equation.2  ��� 



and thus the particular solutions

� EMBED Equation.2  ���

are obtained

______________________________

	*  A proof of this and several related results will be found in a paper shortly to be published by the author.



	Moreover,  it is clear from the above proof that in order to expand any solution



� EMBED Equation.2  ��� 



of the equation

� EMBED Equation.2  ��� 

as a series of the form

� EMBED Equation.2  ���  ,



where  � EMBED Equation.2  ���  is a surface-harmonic of order  n  in  (,  it is only necessary to expand the function  f(u,v)  in surface-harmonics of  u  and  v.



	� EMBED Equation.2  ���.	Expression of the solution of the equation



� EMBED Equation.2  ���



as a series of generalised Bessel functions.



	Another analysis of the equation



� EMBED Equation.2  ��� ,



entirely different from that given in  � EMBED Equation.2  ���,  can be found in the following way



	Consider the expression



� EMBED Equation.2  ��� ;



if this expression be regarded as a function of  s  and  t,  it can for finite non-zero values of  s  and  t  be expanded as a series of  (positive and negative)  integral powers of  s  and  t,  the coefficients in this series being functions of  x, y  and z.  Let the coefficient of the term in  � EMBED Equation.2  ���:  so that we have the relation



� EMBED Equation.2  ���  .



This equation can be regarded as a generalisation of the equation



� EMBED Equation.2  ���  ,

which defines the ordinary Bessel functions;  and we shall consequently call the functions  � EMBED Equation.2  ���  generalised Bessel functions.



	We now proceed to establish some properties for  � EMBED Equation.2  ���;  it will be seen that they are very similar to those of the ordinary Bessel functions.



	In the first place,  since the expression



� EMBED Equation.2  ��� 

satisfies the equation



� EMBED Equation.2  ��� ,



it follows that each of the functions � EMBED Equation.2  ���  satisfies the equation



� EMBED Equation.2  ��� .



In the second place,  we shall obtain an expression for � EMBED Equation.2  ���  as a definite integral.  By Laurent’s theorem,  we know that the coefficient of  � EMBED Equation.2  ���   is the expansion of



� EMBED Equation.2  ��� 

� EMBED Equation.2  ��� ,



where  C  is any simple contour in the s-plane surrounding the origin;  and again applying Laurent’s theorem,  the coefficient of  � EMBED Equation.2  ���  in this expression is seen to be



� EMBED Equation.2  ��� ,



where  D  is any simple contour in the t-plane surrounding the origin.



	Now write  � EMBED Equation.2  ���.  Thus we have the result



� EMBED Equation.2  ��� ,



which may be regarded as the analogue of Bessel’s integral



� EMBED Equation.2  ���.

The functions  � EMBED Equation.2  ���  likewise possess an addition theorem;  for we have



� EMBED Equation.2  ��� 



� EMBED Equation.2  ��� (  � EMBED Equation.2  ��� 



and so



� EMBED Equation.2  ���



� EMBED Equation.2  ���   x � EMBED Equation.2  ���  .



Equating coefficients on both sides of this equation,  we have the results



� EMBED Equation.2  ��� ,



which is the addition theorem for generalised Bessel functions,  and is the analogue of the well known result



� EMBED Equation.2  ���  .



We shall now shew how the generalised Bessel functions furnish an analysis of the general solution of the equation



� EMBED Equation.2  ��� .



For the general solution,  is by  � EMBED Equation.2  ���
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where  f(u, v)  can without loss of generality be taken to be a periodic function of  u  and  v.



	Now let the function  f(u, v)  be expanded by the extended form of Fourier’s theorem,  in the form



� EMBED Equation.2  ���  .



Then we have



� EMBED Equation.2  ���  .



Comparing this with the form just found for the generalised Bessel functions,  we see that the general solution of the equation



� EMBED Equation.2  ���   ,

can be written



� EMBED Equation.2  ���   ,



where the quantities  � EMBED Equation.2  ���  are arbitrary constants.  This furnishes an alternative analysis of the solution to that given in  � EMBED Equation.2  ���.



	� EMBED Equation.2  ���.  Gravitation and Electrostatic Attraction explained as modes of Wave-disturbance.



	The result of  � EMBED Equation.2  ���,  namely that the solution of the equation



� EMBED Equation.2  ��� 



can be analysed into simple plane waves,  throws a new light of those forces,  such as gravitation and electrostatic attraction,  which vary as the inverse square of the distance.  For if a system of forces of this character be considered,  their potential  (or component in any direction)  satisfies the equation
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and therefore ( fortiori it satisfies the equation
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where  k  is any constant.  It follows from  � EMBED Equation.2  ���  that this potential  (or force-component) can be analysed into simple plane waves in various directions,  each wave being propagated with constant velocity.  These waves interfere with each other in such a way that,  when the action has once been set up,  the disturbance at any point does not vary with time,  and depends only on the coordinates  (x, y, z)  of the point.



	It is not difficult to construct,  synthetically,  systems of coexistent simple waves,  having the property that the total disturbance at any point  (due to the sum of all the waves)  varies from point to point,  but does not vary with the time.  A simple example of such a system is the following.



 

	Suppose that a particle is emitting spherical waves,  such that the disturbance at a distance  r  from the origin,  at time  t,  due to those waves whose wave-length lies between  � EMBED Equation.2  ��� ,  is respectively
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where  V  is the velocity of propagation of the waves.  Then after the waves have reached the point  r,  so that  (Vt-r)  is positive,  the total disturbance at the point  (due to the sum of all the waves)  is
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Take  (Vt-(r = y,  where  y  is a new variable.  Then this disturbance is
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or,  since
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it is
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The total disturbance at any point,  due to this system of waves,  is therefore independent of the time,  and is everywhere proportional to the gravitational potential of the particle at that point.



	It is clear from the foregoing that the field of force due to a gravitating body can be analysed,  by a  “spectrum analysis”  as it were,  into an infinite number of constituent fields;  and although the whole field of force does not vary with the time,  yet each of the constituent fields is of an undulatory character,  consisting of a simple wave-disturbance propagated with uniform velocity.  This analysis of the field into constituent fields can most easily be accomplished by analysing the potential  � EMBED Equation.2  ���  of each attracting particle into terms of the type
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as in the example already given.  To each of these terms will correspond one of the constituent fields.  In each of these constituent fields the potential will be constant along each wave-front,  and consequently the gravitational force in each constituent field will be perpendicular to the wave front,  i.e.  the waves will be longitudinal.



	But these results assimilate the propagation of gravity to that of light;  for the undulatory phenomena just described,  in which the varying vector is a gravitational force perpendicular to the wave-front,  may be compared with the undulatory phenomena made familiar by the electromagnetic theory of light,  in which the varying vectors consist of electric and magnetic forces parallel to the wave-front.  The waves are in other respects exactly similar,  and it seems probable that an identical property of the medium ensures their transmission through space.  



	This undulatory theory of gravity would require that gravity should be propagated with a finite velocity,  which however need not be the same as that of light,  and may be enormously greater.



	Of course,  this investigation does not explain the cause of gravity;  all that is done is to shew that in order to account for the propagation across space of forces which vary as the inverse square of the distance,  we have only to suppose that the medium is capable of transmitting,  with a definite though large velocity,  simple periodic undulatory disturbances,  similar to those whose propagation by the medium constitutes,  according to the electromagnetic theory,  the transmission of light.













